Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, đề sai rồi bạn
b, Xét tam giác MND và tam giác PNM ta có :
ta có : ^N _ chung
^MDN = ^PMN = 900
Vậy tam giác MND ~ tam giác PNM (g.g)
=> MN/PN=ND/MN=> MN^2 = ND.PN
c, \(S_{MNP}=\dfrac{1}{2}MN.PM;S_{MNP}=\dfrac{1}{2}PN.DM\Rightarrow MN.PM=PN.DM\)
\(\Rightarrow MD=\dfrac{MN.PM}{PN}=\dfrac{8.12}{\sqrt{8^2+12^2}}=\dfrac{24\sqrt{13}}{13}cm\)
a: Xét ΔMDN vuông tại D và ΔMEP vuông tại E có
góc M chung
=>ΔMDN đồng dạng với ΔMEP
b: MD/ME=MN/MP
=>MD/MN=ME/MP
=>ΔMDE đồng dạng với ΔMNP
Cái này sử dụng phần a là g-g
phần b cmtt như phần a thì được \(\Delta MNP\omega\Delta HNM\)\(\Rightarrow\frac{MN}{NH}=\frac{NP}{MN}\)=>ĐPCM
phần c TỰ LÀM
phần d BÌNH PHƯƠNG TỈ SỐ ĐỒNG DẠNG
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
a) Xét ΔMND và ΔMPN có
\(\widehat{MND}=\widehat{MPN}\)(gt)
\(\widehat{M}\) chung
Do đó: ΔMND\(\sim\)ΔMPN(g-g)
b) Ta có: ΔMND\(\sim\)ΔMPN(cmt)
\(\Leftrightarrow\frac{MD}{MN}=\frac{MN}{MP}\)
hay \(MD=\frac{MN^2}{MP}=\frac{2^2}{4}=1\)cm
Ta có: MD+DP=MP(D nằm giữa M và P)
hay DP=MP-MD=4-1=3cm
Vậy: MD=1cm; DP=3cm