K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC đều có BM là đường trung tuyến

nên BM là phân giác của góc ABC và BM\(\perp\)AC

BM là phân giác của góc ABC

=>\(\widehat{ABM}=\widehat{CBM}=\dfrac{\widehat{ABC}}{2}=30^0\)

M là trung điểm của AC

=>\(AM=MC=\dfrac{AC}{2}=\dfrac{a}{2}\)

ΔAMB vuông tại M

=>\(AM^2+BM^2=AB^2\)

=>\(BM^2=AB^2-AM^2=a^2-\left(0,5a\right)^2=0,75a^2\)

=>\(BM=\dfrac{a\sqrt{3}}{2}\)

Gọi K là trung điểm của AM

=>\(KA=KM=\dfrac{AM}{2}=0,25a\)

ΔBMK vuông tại M

=>\(BM^2+MK^2=BK^2\)

=>\(BK^2=\left(0,25a\right)^2+\left(\dfrac{a\sqrt{3}}{2}\right)^2=\dfrac{13}{16}a^2\)

=>\(BK=\dfrac{a\sqrt{13}}{4}\)

Xét ΔBAM có BK là đường trung tuyến

nên \(\overrightarrow{BA}+\overrightarrow{BM}=2\cdot\overrightarrow{BK}\)

=>\(\left|\overrightarrow{BA}+\overrightarrow{BM}\right|=2\cdot BK=2\cdot\dfrac{a\sqrt{13}}{4}=\dfrac{a\sqrt{13}}{2}\)

Gọi O là trung điểm của AM

BM=BC/2=a/2

\(\Leftrightarrow AM=\dfrac{a\sqrt{3}}{2}\)

\(\Leftrightarrow MO=\dfrac{a\sqrt{3}}{4}\)

Xét ΔOMB vuông tại M có 

\(BO^2=OM^2+BM^2\)

\(=a^2\cdot\dfrac{3}{16}+a^2\cdot\dfrac{1}{4}=a^2\cdot\dfrac{7}{16}\)

\(\Leftrightarrow BO=\dfrac{a\sqrt{7}}{4}\)

Xét ΔBMA có BO là đường trung tuyến

nên \(\overrightarrow{BM}+\overrightarrow{BA}=2\cdot\overrightarrow{BO}\)

\(\Leftrightarrow\left|\overrightarrow{BM}+\overrightarrow{BA}\right|=\dfrac{a\sqrt{7}}{2}\)

20 tháng 11 2023

loading...

10 tháng 12 2021

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BC}\)

10 tháng 12 2021

bạn ơi cái BM tính sao ra á 

 

NV
15 tháng 9 2021

\(\left|\overrightarrow{AM}\right|=AM=\dfrac{a\sqrt{3}}{2}\)

22 tháng 10 2021

Bài 1: 

Gọi M là trung điểm của AD

\(BM=\sqrt{AB^2+AM^2}=\sqrt{4a^2+\dfrac{1}{4}a^2}=\dfrac{\sqrt{17}}{2}a\)

\(\left|\overrightarrow{AB}+\overrightarrow{DB}\right|=2\cdot BM=\sqrt{17}a\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Lời giải:

\(\overrightarrow{AC}.\overrightarrow{BI}=(\overrightarrow{AM}+\overrightarrow{MC})(\overrightarrow{BM}+\overrightarrow{MI})\)

\(=\overrightarrow{AM}.\overrightarrow{BM}+\overrightarrow{AM}.\overrightarrow{MI}+\overrightarrow{MC}.\overrightarrow{BM}+\overrightarrow{MC}.\overrightarrow{MI}\)

\(=\overrightarrow{AM}.\overrightarrow{MI}+\overrightarrow{MC}.\overrightarrow{BM}\)

\(=\overrightarrow{AM}.\frac{-\overrightarrow{AM}}{2}+\frac{\overrightarrow{BC}}{2}.\overrightarrow{BC}=\frac{BC^2-AM^2}{2}\)

\(=\frac{BC^2-(\frac{\sqrt{3}}{2}BC)^2}{2}=\frac{BC^2}{8}=\frac{9a^2}{8}\)