K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDMF vuông tại Mvà ΔENF vuông tại N có

góc F chung

Do đó: ΔDMF đồng dạg với ΔENF

b: Xét ΔDNH vuông tại N và ΔEMH vuông tại M có

góc DHN=góc EHM

Do đo: ΔDNH đồng dạng với ΔEMH

Suy ra: HD/HE=HN/HM

hay \(HD\cdot HM=HE\cdot HN\)

23 tháng 8 2019

Bài 1)

a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)

Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật

b) Câu này không đúng rồi bạn 

Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân 

Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)

c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông

\(AB^2=BC.BH=13.4\)

\(\Rightarrow AB=2\sqrt{13}\)

\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)

Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)

23 tháng 8 2019

Bài 2)

a) \(ED=AD-AE=17-8=9\)

Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy

\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)

Vậy \(\Delta ABE~\Delta DEC\)

b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)

c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông 

Nên BK = AD và AB = DK 

\(\Rightarrow KC=DC-DK=12-6=6\)

Theo định lý Pytago ta có

\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)

a: Xét ΔEDF vuông tại D có DH là đường cao

nên \(DE^2=EH\cdot EF\)

b: EF=10cm

\(EH=\dfrac{6^2}{10}=3.6\left(cm\right)\)

Xét ΔDEF có EM là phân giác

nên DM/DE=FM/FE

=>DM/3=FM/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DM}{3}=\dfrac{FM}{5}=\dfrac{8}{8}=1\)

=>DM=3cm; FM=5cm

10 tháng 4 2019

a) Tam giác ABC có BD là đg pg=>\(\frac{AB}{BC}=\frac{AD}{DC}\)=>\(\frac{AB+BC}{BC}=\frac{AD+DC}{DC}\)hay \(\frac{50}{20}=\frac{30}{DC}\)=>DC=12(cm)

=>AC-DC=ADhay 30-12=18(cm)