K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

#)Mình vẽ hình cho nhé :

A B C D E I J O

a: Xét ΔABC có BD là đường phân giác

nên AB/BC=AD/DC

hay AD/DC=AC/BC(1)

XétΔACB có CE là đường phân giác

nên AC/BC=AE/EB(2)

Từ (1) và (2) suy ra AD/DC=AE/EB

=>DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà \(\widehat{EBC}=\widehat{DCB}\)

nên BEDC là hình thang cân

b: Xét ΔEDB có \(\widehat{EDB}=\widehat{EBD}\left(=\widehat{DBC}\right)\)

nên ΔEDB cân tại E

=>ED=EB

mà EB=DC

nên BE=ED=DC

26 tháng 7 2016

 a) có ^ABC = ^ACB (hiễn nhiên) 
=> ^DBC = ^ECB, BC là cạnh chung 
=> tgiác DBC = tgiác ECB 
=> BE = CD mà AB = AC 
=> AE/AB = AD/AC 
=> ED // BC 

b) từ cm trên đã có BE = CD, ta chỉ cần cm BE = ED? 

Có: ^EDB = ^DBC (so le trong) 
mà ^DBC = ^EBD (BD là phân giác) 

=> ^EDB = ^DBC = ^EBD 
=> tgiác BED cân tại E 
=> BE = ED 

c) 
*AI cắt ED tại J', ta cm J' ≡ J 
Từ tính chất tgiác đồng dạng ta có: 

EJ'/BI = AE/AB = ED/BC = ED/2BI 
=> EJ' = ED/2 => J' là trung điểm ED => J' ≡ J 
Vậy A,I,J thẳng hàng 

*OI cắt ED tại J" ta cm J" ≡ J 
hiễn nhiên ta có: 
OD/OB = ED/BC (tgiác ODE đồng dạng tgiác OBC) 
mặt khác: 
^J"DO = ^OBI (so le trong), ^J"OD = ^IOB (đối đỉnh) 
=> tgiác J"DO đồng dạng với tgiác IBO 

=> J"D/IB = OD/OB = ED/BC = ED/ 2IB 

=> J"D = ED/2 => J" là trung điểm ED => J" ≡ J 

Tóm lại A,I,O,J thẳng hàng 

7 tháng 8 2018

A E D O B C I J

12 tháng 7 2021

AI cắt ED tại J', ta cm J' ≡ J 


Từ tính chất tgiác đồng dạng ta có: 

EJ'/BI = AE/AB = ED/BC = ED/2BI 


=> EJ' = ED/2 => J' là trung điểm ED => J' ≡ J 


Vậy A,I,J thẳng hàng 

*OI cắt ED tại J" ta cm J" ≡ J 


Hiển nhiên ta có: 


OD/OB = ED/BC (tgiác ODE đồng dạng tgiác OBC) 


Mặt khác: 


^J"DO = ^OBI (so le trong), ^J"OD = ^IOB (đối đỉnh) 


=> tgiác J"DO đồng dạng với tgiác IBO 

=> J"D/IB = OD/OB = ED/BC = ED/ 2IB 

=> J"D = ED/2 => J" là trung điểm ED => J" ≡ J 

Tóm lại A,I,O,J thẳng hàng 

a: Xét ΔABD và ΔACE có 

\(\widehat{ABD}=\widehat{ACE}\)

AB=AC
\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà BD=CE

nên BEDC là hình thang cân

b: Xét ΔEBD có \(\widehat{EBD}=\widehat{EDB}\left(=\widehat{DBC}\right)\)

nên ΔEBD cân tại E

Suy ra: ED=EB

mà EB=DC

nên BE=ED=DC

30 tháng 9 2021

Chả thể hiểu đc

23 tháng 6 2017

c) Ta có tam giác AED cân tại A có J là trung điểm của ED

=> AJ là tia phân giác của góc BAC      (1)

Xét tam giác ABC có O là giao điểm của các đường phân giác

=> AO là tia phân giác của góc BAC      (2)

Xét tam giác ABC cân tại A có I là trung điểm của BC

=> AI là tia phân giác của góc BAC        (3)

Từ (1), (2), (3) suy ra A, J, O, I thẳng hàng

20 tháng 6 2016

vẽ hình được không

20 tháng 6 2016

thế nào cũng được nhưng trả lời nhanh nhanh nhé mình đang cần