Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ame và tam giác bmc
me=mc (gt)
góc ema= góc bmc (đối đỉnh)
am=bm( m là trung điểm của ab)
=> tam giác ame= tam giác bmc(c.g.c)
=> góc eam= góc cbm ( 2 cạnh tương ứng)
mà góc eam và góc cbm SLT
=>ae //bc
xét tam giác afn và tam giác cbn
fn=bn (gt)
góc an f= góc bnc (đ đ)
an=cn ( n là trung điểm của ac)
=> tam giác a fn= tam giác cbn (c.g.c)
=> a f=cb (2 cạnh t ung)
mà ae=cb (tam giác ame= tam giác bmc)
=>a f= ae (=cb)
=> a là trung điểm của e f
a: Xét tứ giác AEBC có
M là trung điểm của AB
M là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE=BC
b: Xét tứ giác ABCF có
N là trung điểm của AC
N là trung điểm của BF
Do đó: ABCF là hình bình hành
Suy ra: AF=BC
mà AE=BC
nên AE=FA
a: Xét tứ giác AEBC có
M là trung điểm của AB
M là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE=BC
b: Xét tứ giác ABCF có
N là trung điểm của AC
N là trung điểm của BF
Do đó: ABCF là hình bình hành
Suy ra: AF=BC
mà AE=BC
nên AE=FA
a: Xét ΔAME và ΔBMC có
MA=MB
\(\widehat{AME}=\widehat{BMC}\)
ME=MC
Do đó: ΔAME=ΔBMC
Xét tứ giác AEBC có
M là trung điểm của CE
M la trung điểm của AB
DO đó: AEBC là hình bình hành
Suy ra:AE//BC và AE=BC
b: Xét ΔANF và ΔCNB có
NA=NC
\(\widehat{ANF}=\widehat{CNB}\)
NF=NB
Do đó: ΔANF=ΔCNB
Xét tứ giác ABCF có
N là trung điểm của AC
N là trung điểm của BF
Do đó: ABCF là hình bình hành
Suy ra: AF//BC và AF=BC
c: Ta có: AE//BC
AF//BC
Do đó: E,A,F thẳng hàng
mà AE=AF
nên Alà trung điểm của FE
a,b: Xét tứ giác AECB có
N là trung điểm chung của AC,EB
nên AECB là hình bình hành
=>AE//BC và AE=BC
c: Xét tứ giác AFBC có
M là trung điểm chung của AB và FC
nên AFBC là hình bình hành
=>AF//BC
=>F,A,E thẳng hàng
bài 2)
Ta có: 16x : 2y = 128
\(\Leftrightarrow\)24x : 2y = 27
\(\Leftrightarrow\)24x - y = 27
\(\Leftrightarrow\)4x - y = 7 (1)
Ta lại có: x = \(\frac{y}{3}\)\(\Rightarrow\)x = 3y (2)
Thay (2) vào (1) ta đc:
4*3y - y = 7
\(\Leftrightarrow\)11y = 7
\(\Leftrightarrow\)y = \(\frac{7}{11}\)
\(\Rightarrow\)x = \(\frac{7}{11}\): 3 = \(\frac{7}{33}\)
3,
A B C M N E F
a, Xét t/g AME và t/g BMC có:
MA = MB (gt)
ME = MC (gt)
góc AME = góc BMC (đối đỉnh)
Do đó t/g AME = t/g BMC (c.g.c)
b, Vì t/g AME = t/g BMC (câu a) => góc AEM = góc BCM (2 góc tương ứng)
Mà góc AEM và góc BCM là hai góc ở vị trí so le trong nên AE // BC
c, Xét t/g ANF và t/g CNB có:
AN = CN (gt)
NF = NB (gt)
góc ANF = góc CNB (đối đỉnh)
Do đó t/g ANF = t/g CNB (c.g.c)
=> AF = BC (2 cạnh tương ứng)
d, Vì t/g ANF = t/g CNB (câu c) => góc AFN = góc NBC (2 góc tương ứng)
Mà góc AFN và góc NBC là hai góc ở vị trí so le trong nên AF // BC
Ta có: AE // BC, AF // BC
=> AE trùng AF
=> A,E,F thẳng hàng (1)
Vì t/g AME = t/g BMC => AE = BC (2 góc tương ứng)
Ta lại có: AE = BC, AF = BC => AE = AF (2)
Từ (1) và (2) => A là trung điểm của EF
a: Xét tứ giác ACBE có
M là trung điểm chung của AB và CE
=>ACBE là hbh
=>AC=BE và AE//BC
b: Xét tứ giác AFCB có
N là trung điểm chung của AC và FB
=>AFCB là hình bình hành
=>AF//BC và AF=BC
c: AE=BC
AF=BC
=>AE=AF
d: AE//BC
AF//BC
=>E,A,F thẳng hàng
mà AE=AF
nên A là trung điểm của EF