Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔANI và ΔCNM có
AN=CN(N là trung điểm của AC)
\(\widehat{ANI}=\widehat{CNM}\)(hai góc đối đỉnh)
NI=NM(gt)
Do đó: ΔANI=ΔCNM(c-g-c)
b) Ta có: ΔANI=ΔCNM(cmt)
nên AI=MC(hai cạnh tương ứng)
Ta có: ΔANI=ΔCNM(cmt)
nên \(\widehat{IAN}=\widehat{MCN}\)(hai góc tương ứng)
mà \(\widehat{IAN}\) và \(\widehat{MCN}\) là hai góc ở vị trí so le trong
nên MC//AI(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
hay MN//BC và \(MN=\dfrac{1}{2}\cdot BC\)(Định lí 2 về đường trung bình của tam giác)
d) Xét ΔANE và ΔCNF có
NA=NC(N là trung điểm của AC)
\(\widehat{EAN}=\widehat{FCN}\)(cmt)
AE=CF(gt)
Do đó: ΔANE=ΔCNF(c-g-c)
hay \(\widehat{ANE}=\widehat{CNF}\)(hai góc tương ứng)
mà \(\widehat{ANE}+\widehat{ENC}=180^0\)(hai góc kề bù)
nên \(\widehat{CNF}+\widehat{CNE}=180^0\)
\(\Leftrightarrow\widehat{FNE}=180^0\)
hay E,N,F thẳng hàng(đpcm)
bài 1
gọi số tiền lãi của mỗi người là a,b,c (a,b,c > 0)
Ta có \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\\a+b+c=36\end{cases}}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{36}{10}=\frac{18}{5}\)
Do đó \(a=\frac{18}{5}.2=\frac{36}{5}=7,2\)(triệu đồng)
\(b=\frac{18}{5}.3=10,8\)(triệu đồng)
\(c=\frac{18}{5}.5=18\)(triệu đồng)
Vậy .........
Bạn tham khảo ở đây
Câu hỏi của Công chúa thủy tề - Toán lớp 7 - Học toán với OnlineMath
a/ Xét \(\Delta ANM\)và \(\Delta CND\)có :
+) \(MN=ND\left(gt\right).\)
+) \(AN=NC.\)
+) Góc \(ANM\)= Góc \(NCD.\)
\(\Rightarrow\Delta ANM=\Delta CND\left(c.g.c\right).\)
\(\Rightarrow CD=AM.\)
Mà \(AM=BM.\)
\(\Rightarrow CD=BM.\)
b/ Xét \(\Delta ABC\)có \(M,N\)lần lượt là trung điểm của \(AB,AC.\)
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC.\)
\(\Rightarrow MN//BC\)và \(MN=\frac{1}{2}BC.\)
c/ Ta có \(MN=\frac{1}{2}BC.\)
\(\Rightarrow2MN=BC.\)
\(\Leftrightarrow MD=BC.\)
Xét tứ giác \(BMDC\)có \(MD=BC\)và \(MD//BC.\)
\(\Rightarrow\)Tứ giác \(BMDC\)là hình bình hành.
\(\Rightarrow MC\)và \(BD\)là hai đường chéo của hình bình hành \(BMDC.\)
\(\Rightarrow BD\)đi qua trung điểm của đoạn thẳng \(MC.\)
#Riin