K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

Cái này chắc là tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\) theo a nhỉ? :))

\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AI}\)

\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\left|\overrightarrow{AI}\right|=2AI\)

Theo đly py-ta-go:

\(AI=\sqrt{\frac{a^2}{4}+AB^2}\)

ta có \(BC=\frac{AC}{2}\Rightarrow AC=2BC=2a\)

\(\Rightarrow AB^2=AC^2-BC^2=4a^2-a^2=3a^2\)

\(\Rightarrow AI=\sqrt{\frac{a^2}{4}+3a^2}=\frac{\sqrt{13}}{2}a\)

Vậy \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\frac{\sqrt{13}}{2}a\)

1 tháng 8 2019

Bạn ơi cho mình hỏi vì sao 2 vecto đó cộng lại thì ra 2AI vậy bạn?

20 tháng 11 2023

loading...

NV
24 tháng 7 2021

Tam giác vuông cân tại C \(\Rightarrow AC=\dfrac{AB}{\sqrt{2}}=a\sqrt{2}\)

Do I là trung điểm BC \(\Rightarrow\overrightarrow{IC}=-\overrightarrow{IB}\)

Vậy:

\(\left|\overrightarrow{AI}-\overrightarrow{IB}\right|=\left|\overrightarrow{AI}+\overrightarrow{IC}\right|=\left|\overrightarrow{AC}\right|=AC=a\sqrt{2}\)

3 tháng 9 2021

a) ta có vector AA'+vectorBB'+vectorCC'=1/2(vectorAB+vectorAC+vectorBA+vectorBC+vectorCA+vectorCB)=vector 0

t/c trung tuyến

Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR: Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR: a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD b) Vecto AB + vecto CD = Vecto AD + vecto CB c)Vecto AB - vecto CD = Vecto AB - vecto BD Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH +...
Đọc tiếp

Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR:

Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE

Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR:

a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD

b) Vecto AB + vecto CD = Vecto AD + vecto CB

c)Vecto AB - vecto CD = Vecto AB - vecto BD

Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH + vecto IB + vecto IK + vecto IC = Vecto 0

Bài 4: Cho hình bình hành ABCD với O là tâm. CMR:

a) Vecto CO - vecto OB = Vecto BA

b) Vecto AB - vecto BC = Vecto DB

c) Vecto DA - vecto DB = Vecto OD - vecto OC

d) Vecto DA - vecto DB + vecto DC = Vecto 0

Bài 4: Cho tam giác ABC vuông cân tại A, trọng tâm G. cạnh AB=a. Gọi I là trung điểm BC. Tính độ dài vecto sau:

a) Vecto a= vecto AB + vecto AC

b) Vecto b= vecto AB + vecto AC + vecto AG

c) Vecto c= vecto BA + vecto BC

d) Vecto d= vecto AB - vecto AC + vecto BI

5
4 tháng 8 2019

Xíu nữa làm :v

4 tháng 8 2019

1) Ta có:\(\overrightarrow{AB}+\overrightarrow{DE}-\overrightarrow{DB}+\overrightarrow{BC}=\overrightarrow{AE}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{BE}+\overrightarrow{EC}\)

\(=\overrightarrow{AC}+\overrightarrow{BE}+\overrightarrow{CE}+\overrightarrow{EC}=\overrightarrow{AC}+\overrightarrow{BE}\left(đpcm\right)\)2) a) Ta có: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)

\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\left(đpcm\right)\)

b) Ta có: \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)

\(=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)c) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}-\overrightarrow{BD}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}+\overrightarrow{BC}\) ( đề bài bị lỗi gì à ?? :v ) hay do mình =))

3 tháng 3 2023

\(a,\overrightarrow{AB}=\left(2;10\right)\)

\(\overrightarrow{AC}=\left(-5;5\right)\)

\(\overrightarrow{BC}=\left(-7;-5\right)\)

\(b,\) Thiếu dữ kiện

\(c,Cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=\dfrac{\left|2\left(-5\right)+10.5\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-5\right)^2+5^2}}=\dfrac{2\sqrt{13}}{13}\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{AC}\right)=56^o18'\)

\(Cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\left|2\left(-7\right)+10\left(-5\right)\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-7\right)^2+\left(-5\right)^2}}\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=43^o9'\)