Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
BC2=AB2+AC2=62+82= 100 Suy ra: BC = 10 (cm)
Ta có sin góc B =AC/BC = 8/10-0.8
cos B= AB/BC=6/10=0.6
tgB =AC/BC=8/6=4/3
cotg B = AB/AC=6/8=3/4
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
(AB)^2 + (AC)^2 = (BC)^2
=>(6)^2 + (8)^2 =(BC)^2
=>100 = (BC)2 =>BC = 10
sinB = ac/bc=6/10=0,6
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot10=6^2=36\)
=>BH=36/10=3,6(cm)
XétΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(HE^2+HF^2=AH^2\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot BE=HE^2\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot FC=HF^2\)
\(AE\cdot BE+AF\cdot FC\)
\(=HE^2+HF^2\)
\(=AH^2\)
c: ΔABC vuông tại A
mà AI là đường trung tuyến
nên AI=BI=CI
IA=IC
=>ΔIAC cân tại I
=>\(\widehat{IAC}=\widehat{ICA}\)
=>\(\widehat{OAF}=\widehat{ACB}\)
AEHF là hình chữ nhật
=>\(\widehat{AFE}=\widehat{AHE}\)
mà \(\widehat{AHE}=\widehat{ABH}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AFE}=\widehat{ABH}\)
=>\(\widehat{AFO}=\widehat{ABC}\)
\(\widehat{AFO}+\widehat{FAO}=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AO\(\perp\)OF tại O
=>AI\(\perp\)FE tại O
Xét ΔAEF vuông tại A có AO là đường cao
nên \(\dfrac{1}{AO^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
∆ABC vuông tại A có AH là đường cao
⇒ AH² = HB.HC
⇒ HB = AH² : HC
= 6² : 8
= 4,5 (cm)
⇒ BC = HB + HC
= 4,5 + 8
= 12,5 (cm)
∆ABH vuông tại H
⇒ AB² = AH² + BH² (Pytago)
= 6² + 4,5²
= 56,25
⇒ AB = 7,5 (cm)
∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
⇒ AC² = BC² - AB²
= 12,5² - 7,5²
= 100
⇒ AC = 10 (cm)
sinCAH = HC/AC
= 8/10
= 0,8
⇒ CAH ≈ 53⁰
HB=6^2/8=4,5cm
AB=căn 4,5*12,5=7,5cm
AC=cân 8*12,5=10cm
góc CAH=góc B
sin B=AC/BC=10/12,5=4/5
=>góc CAH=53 độ
a: BC=căn 6^2+8^2=10cm
BH=AB^2/BC=3,6cm
CH=10-3,6=6,4cm
sin ABC=AC/BC=4/5
=>góc ABC=53 độ
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
=>AE/AC=AF/AB
=>ΔAEF đồng dạng với ΔACB
c: góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
góc KAC+góc AFE
=góc AHE+góc KCA
=góc ABC+góc ACB=90 độ
=>AK vuông góc EF
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=4,8cm
Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}=\dfrac{3}{5}\)
=>\(\widehat{ACB}\simeq36^052'\)
b: ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF đồng dạng với ΔACB
=>\(\widehat{AFE}=\widehat{ABC}\)
a:
ΔABC vuông tại A
=>BC^2=AB^2+AC^2
=>\(BC^2=25+64=89\)
=>\(BC=\sqrt{89}\)
Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}=\dfrac{8}{5}\)
=>\(\widehat{B}\simeq58^0\)
=>\(\widehat{C}=32^0\)
b: Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2; BM*BA=BH^2; AM*MB=HM^2
ΔAHC vuông tại H có HN làđường cao
nên AN*AC=AH^2;CN*CA=CH^2; NA*NC=NH^2
AM*MB+NA*NC
=HM^2+HN^2
=MN^2
c: AB^2/AC^2
\(=\dfrac{BH\cdot CB}{CH\cdot CB}=\dfrac{BH}{CH}\)
Lời giải:
$\tan B=\frac{AC}{AB}=\frac{8}{6}=\frac{4}{3}$
$\Rightarrow \widehat{B}=53^0$
$\widehat{C}=90^0-\widehat{B}=90^0-53^0=37^0$
làm sao suy ra được từ 4/3 mà góc b =53 độ vậy ạ