K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2021

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:

\(AH^2=BH.HC\)

\(\Rightarrow BH=\dfrac{AH^2}{HC}=\dfrac{8^2}{3}\simeq21,33\left(cm\right)\)

24 tháng 9 2021

Cảm ơn ạ

29 tháng 10 2023

Đề thiếu rồi bạn

\(BH=\sqrt{10^2-8^2}=6\left(cm\right)\)

\(CH=\dfrac{AH^2}{BH}=\dfrac{8^2}{6}=\dfrac{64}{6}=\dfrac{32}{3}\left(cm\right)\)

23 tháng 11 2021

Ta có: BH = \(\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9cm\\\)

=> \(AH=\sqrt{15^2-9^2}=12cm\) (Theo pytago)

=> HC = BC - BH = 25 - 9 = 16 cm

a:

ΔABC vuông tại A

=>BC^2=AB^2+AC^2

=>\(BC^2=25+64=89\)

=>\(BC=\sqrt{89}\)

Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}=\dfrac{8}{5}\)

=>\(\widehat{B}\simeq58^0\)

=>\(\widehat{C}=32^0\)

b: Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

ΔAHB vuông tại H có HM vuông góc AB

nên AM*AB=AH^2; BM*BA=BH^2; AM*MB=HM^2

ΔAHC vuông tại H có HN làđường cao

nên AN*AC=AH^2;CN*CA=CH^2; NA*NC=NH^2

AM*MB+NA*NC

=HM^2+HN^2

=MN^2

c: AB^2/AC^2

\(=\dfrac{BH\cdot CB}{CH\cdot CB}=\dfrac{BH}{CH}\)

2 tháng 12 2021

a) Áp dụng HTL :

\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)

\(AC\simeq31,18\left(cm\right)\)

\(AH=\sqrt{25\cdot64}=40\left(cm\right)\)

Xét ΔAHB vuông tại H có

\(\tan B=\dfrac{AH}{HB}=\dfrac{40}{25}=1.6\)

nên \(\widehat{B}\simeq58^0\)

hay \(\widehat{C}=32^0\)