K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔNMB vuông tại M và ΔNMC vuông tại M có

MC=MB(M là trung điểm của BC)

NM chung

Do đó: ΔNMB=ΔNMC(hai cạnh góc vuông)

⇒NB=NC(hai cạnh tương ứng)

15 tháng 7 2023

a) Xét △ABM vuông tại A và △DBM vuông tại D có:

BM chung

AB=DB=3cm(gt)

=> △ABM=△DBM (cạnh huyền-cạnh góc vuông) => AM=DM(2 cạnh t/ứ)

b) Xét △AMN và △DMC có:

AMN=DMC(2 góc đối đỉnh)

AM=DM(cmt)

MAN=MDC(gt)

=> △AMN=△DMC(g.c.g) => MN=MC(2 cạnh tướng ứng) => △MCN cân tại M

c) Vì △AMN=△DMC(cmt) => AN=DC(2 cạnh tương ứng)

Ta có AB=BD;AN=DC;BN=AN+AB;BC=BD+DC => BN=BC=> △BNC cân tại B

Vì △ABM=△DBM(cmt)=> ABM=DBM=> NBK=CBK (A thuộc BN; D thuộc BC;M thuộc BK) => BK là phân giác NBC

=> Trong △BNC cân tại B, BK là đường phân giác, đường trung trực, đường trung tuyến, đường cao,... (t/c) => BK là đường trung trực của CN

d) Áp dụng định lý Pytago vào △ABC vuông tại A có: AB2+AC2=BC^2

=> 9+16=25=BC^2 (cm) => BC = 5 cm

Ta có BD+DC=BC;BD=3cm=> DC=2cm

Ta có AN=DC(cmt) => AN=2cm

Áp dụng định lý Pytago vào △ANC vuông tại A có:

AN^2+AC^2=NC^2

=> 4+16=NC^2

=> NC= căn 20 = 2 x căn 5 (cm)

Vì BK là trung trực NC => K là trung điểm NC => KC = 1/2 NC = căn 5 (cm)

Áp dụng định lý Pytago vào △BKC vuông tại K có:

BC^2=BK^2+KC^2 => BK^2=BC^2+KC^2=25-5=20cm => BK=căn 20=2 nhânnhân căn 5 (cm)

3 tháng 5 2020

Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu

a, Xét ∆BMN vuông tại M và ∆CMN vuông tại M có

BM = CM (M là trung điểm BC)

MN : chung

=>∆BMN = ∆CMN (c.g.c)

=> BN = CM (2 cạnh tương ứng)

b, Xét ∆ABN vuông tai A

=> ANB nhọn

=> BNK tù (ANB và BNK kề bù )

Xét ∆BNK có BNK là góc tù

=> BK > BN (cạnh dối diện vs góc tù cạnh lớn nhất trong ∆)

Mà BN = CN (cmt)

=> BK > CN

Bài 1:

a) Ta có: M∈BC(gt)

mà M nằm trên đường trung trực của BC(gt)

nên M là trung điểm của BC

Xét ΔNBM vuông tại M và ΔNCM vuông tại M có

NM là cạnh chung

BM=CM(M là trung điểm của BC)

Do đó: ΔNBM=ΔNCM(hai cạnh góc vuông)

⇒NB=NC(hai cạnh tương ứng)

b) Ta có: ΔANB vuông tại A(AB⊥AC, N∈AC)

nên \(\widehat{ANB}< 90^0\)

Ta có: \(\widehat{ANB}+\widehat{KNB}=180^0\)(hai góc kề bù)

\(\widehat{ANB}< 90^0\)

nên \(\widehat{KNB}>90^0\)

Xét ΔKNB có \(\widehat{KNB}>90^0\)(cmt)

mà cạnh đối diện với \(\widehat{KNB}\) là BK

nên BK là cạnh lớn nhất trong ΔKNB(Trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất)

hay BK>BN

mà BN=CN(cmt)

nên BK>CN

Bài 2:

a) Xét ΔAHB vuông tại H có \(\widehat{BAH}+\widehat{B}=90^0\)(hai góc phụ nhau)(1)

Xét ΔAHC vuông tại H có \(\widehat{CAH}+\widehat{C}=90^0\)(hai góc phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{BAH}+\widehat{B}=\widehat{CAH}+\widehat{C}\)

\(\widehat{BAH}< \widehat{CAH}\)

nên \(\widehat{B}>\widehat{C}\)

b) Xét ΔABC có \(\widehat{B}>\widehat{C}\)(cmt)

mà cạnh đối diện với \(\widehat{B}\) trong ΔABC là cạnh AC

và cạnh đối diện với \(\widehat{C}\) trong ΔABC là cạnh AB

nên AC>AB(định lí 2 về quan hệ giữa góc và cạnh đối diện trong tam giác)

Xét ΔABC có AC>AB(cmt)

mà HC là hình chiếu của AC trên BC

và HB là hình chiếu của AB trên BC

nên HC>HB(Định lí 2b về quan hệ giữa đường vuông góc và đường xiên; đường xiên và hình chiếu)

hay HB<HC

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xet ΔCDB có

CA,DI là trung tuyến

CA căt DI tại N

=>N là trọng tâm

=>CN=2/3*CA=8/3cm

c: Gọi G là trung điểm của CA

=>PG là trung trực của CA

=>PC=PA và PG//DA

=>ΔPCA cân tại P

Xét ΔCAD có

G la trung điểm của CA

GP//DA

=>P là trung điểm của CD

=>B,N,P thẳng hàng

23 tháng 2 2017

Gọi chiều dài của tấm thứ nhất là x,chiều rộng của tấm thứ nhất là y.
Gọi chiều rộng của tấm thứ 2 là z,gọi chiều dài của tấm thứ 3 là t.Ta có:
$2x+t=110$
$2z+y=2,1$
Và có:
$\dfrac{xy}{120000}=\dfrac{xz}{192000}=\dfrac{1440 00}{zt}$
Ta có:
$\dfrac{xy}{120000}=\dfrac{xz}{192000}
ightarrow \dfrac{y}{5}=\dfrac{z}{8}$
Đặt $\dfrac{y}{5}=\dfrac{z}{8}=k 
ightarrow y=5k \ \ z=8k$
$
ightarrow 2.8k+5k=21k=2,1 
ightarrow k=0,1 
ightarrow z=0,8m \ \ y=0,5m$
Lại có:
$\dfrac{xz}{192000}=\dfrac{144000}{zt} 
ightarrow \dfrac{0,8x}{192000}=\dfrac{0,8t}{144000} 
ightarrow \dfrac{x}{4}=\dfrac{t}{3}$
Đặt $\dfrac{x}{4}=\dfrac{t}{3}=m 
ightarrow x=4n \ \ t=3n$
$
ightarrow 2x+t=11n=110 
ightarrow n=10 
ightarrow x=40 \ \ t=30$
$
ightarrow $ $xy=40.0,5=20 m^2 \\ xz=40.0,8=32m^2 \\ zt=30.0,8=24$

20 tháng 3 2018

xem trên mạng

26 tháng 4 2021

Chưa chắc đã có mà xem 

27 tháng 12 2021

a: Xét ΔABK và ΔEBK có

BA=BE

\(\widehat{ABK}=\widehat{EBK}\)

BK chung

Do đó: ΔABK=ΔEBK

Suy ra: KA=KE

27 tháng 12 2021

Bạn ơi giúp mình giải hết bài này đc ko

cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA.Tia phân giác của góc B cắt AC tại K.

a) So sánh AK và KE.

b) Chứng minh EK vuông góc BC.

c) Chứng minh: BK là đường trung trực của đoạn thẳng AE