Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mình với nhé mai mình thi cuối học kì I môn toán rồi. Chúc các bạn có một kì thi tốt đẹp.
đề bài sai à
câu a tam giác vuông tại A mà góc B = 90o suy ra góc C = 0o à
A B C H I E D
ta có \(\widehat{ABH}+\widehat{HAB}=90^o\)( tam giác HAB vuông tại H )
và \(\widehat{HAB}+\widehat{HAC}=90^o\left(gt\right)\)
suy ra \(\widehat{ABH}=\widehat{HAC}\)( vì cùng phụ với HAB )
b) xét \(\Delta IAH \)và \(\Delta ICE\)có
IA = IC (gt)
IH =IE (gt)
góc HIA = góc EIC ( đối đỉnh )
do đó \(\Delta IAH=\Delta ICE\left(c.g.c\right)\)
suy ra AH = EC ( 2 cạnh tương ứng )
và \(\widehat{HAI}=\widehat{ECA}\)(2 góc tương ứng )
xét \(\Delta HAC\)và \(\Delta ECA\)có
AH = EC (cmt)
góc HAI = góc ECA (cmt)
AC là cạnh chung
do đó \(\Delta HAC=\Delta ECA\left(c.g.c\right)\)
suy ra \(\widehat{AHC}=\widehat{CEA}\)(2 góc tương ứng)
mà \(\widehat{AHC}=90^o\Rightarrow\widehat{CEA}=90^o\)
hay \(CE⊥AE\)
a/ Gọi E là trung điểm của BC
Ta có: \(BC=2AB\left(gt\right)\)
\(\Rightarrow AB=\frac{1}{2}BC\) (1)
Lại có E là trung điểm của BC
\(\Rightarrow BE=EC=\frac{1}{2}BC\) (2)
Từ (1) và (2) \(\Rightarrow AB=BE=EC\)
Xét \(\Delta BDA\) và \(\Delta BDE\) có:
BD chung
\(\widehat{B_1}=\widehat{B_2}\) (do BD là phân giác của \(\widehat{B}\))
AB=BE (cmt)
Suy ra: \(\Delta BDA=\Delta BDE\left(c.g.c\right)\)
Xét \(\Delta BED\) và \(\Delta CED\) có:
\(\widehat{E_1}=\widehat{E_2}=90^0\) ( kề bù và \(\widehat{E_1}=90^0\))
DE chung
BE=EC (cmt)
Suy ra: \(\Delta BED=\Delta CED\left(c.g.c\right)\)
\(\Rightarrow DB=DC\) (hai cạnh tương ứng)
b/ Xét \(\Delta ABC\) có:
\(\widehat{B}+\widehat{C}=90^0\)
Mà: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}\) (Do \(\Delta BED=\Delta CED\)) và\(\widehat{B_1}=\widehat{B_2}\)
Suy ra: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}\). Mà: \(\widehat{B_1}+\widehat{B_2}+\widehat{C}=90^0\)
Suy ra: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}=90^0\div3=30^0\)
Nên: \(\widehat{B}=\widehat{B_1}+\widehat{B_2}=30^0+30^0=60^0\)
Lưu ý: Hình vẽ minh họa phía dưới
A D C B E 1 2 1 2 1 2 3
a) xét tam giác ABD và tam giác ACD có
AB=AC,AD là cạnh chung góc BAD= góc DAC
vậy tam giác ABD=tam giác ACD(C.g.c)
Suy ra gócADB=gócADC=1/2BDC=1/2*180=90
Hay AD vuông góc với BC
+ΔABD vuông tại A => ˆABD+ˆADB=90
Mà ˆADB = ˆCDE đối đỉnh
=>ˆABD^+ˆCDE = 90 (1)
+ΔCBE vuông tại C =>ˆCBE+ˆCEB=90
Mà ˆCBE = ˆABD ( BD là phân giác)
=> ˆCEB+ˆABD = 90 (2)
(1)(2) => ˆCEB =ˆCDE hay ˆCED=ˆCDE ( dpcm)
Hiệu của hai số là 4. Nếu tăng một số gấp ba lần, giữ nguyên số kia thì hiệu của chúng
bằng 60. Tìm hai số đó
: Xét ΔCAB có
M là trung điểm của AB
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác AMCN có
E là trung điểm của đường chéo AC
E là trung điểm của đường chéo MN
Do đó: AMCN là hình bình hành
mà MN⊥AC
nên AMCN là hình thoi
+) Ta có BD là tia phân giác của góc ABC nên: ∠(ABD) = ∠(DBC) (1)
+ Lại có: ∠(ADB)= ∠(CDE) ( hai góc đối đỉnh) (2)
+) Tam giác ABD vuông tại A nên:
∠ (ABD) + ∠(ADB) = 90° (tính chất tam giác vuông) (3)
Từ (1); (2) và (3) suy ra: ∠ (DBC) + ∠(CDE) = 90° (4)
+) Tam giác BCE vuông tại C nên:
∠ (DBC) + ∠(BEC) = 90° (tính chất tam giác vuông) (5)
Từ (4) và (5) suy ra : ∠ (CDE) = ∠(BEC)
Vậy tam giác CDE có hai góc bằng nhau.