Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D M I
Nối A với D
Xét \(\Delta\) ADM và \(\Delta\) CBM có:
MD = MB ( giả thiết )
AMD = CMB ( 2 góc đối đỉnh )
AM = CM ( M là trung điểm của AC )
=> \(\Delta\) ADM = \(\Delta\) CBM ( c . g . c )
=> DA = BC ( 2 cạnh tương ứng ) (1)
=> ADM = CBM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong của 2 đoạn thẳng AD và BC cắt bởi BD
=> AD // BC
hay AD // BE
=> BAD = ABE ( 2 góc so le trong )
hay IAD = IBE (1)
=> ADE = BED ( 2 góc so le trong)
hay ADI = BEI (2)
Ta có: BE = BC ( theo giả thiết )
Mà DA = BC ( chứng minh (1) )
=> DA = BE (3)
Xét \(\Delta\) IAD và \(\Delta\) IBE có:
IAD = IBE ( chứng minh (1) )
DA = BE ( chứng minh (3) )
ADI = BEI ( chứng minh (2) )
=> \(\Delta\) IAD = \(\Delta\) IBE ( g . c . g )
=> IA = IB (2 cạnh tương ứng )
Vậy IA = IB ( đpcm )
Chuk bn hk tốt !
a: ta có: AB⊥AC
KE⊥AC
Do đó: AB//KE
b: Ta có: AB//KE
nên \(\widehat{ABC}=\widehat{KEC}\)
c: Xét ΔABC vuông tại A và ΔKEC vuông tại K có
CA=CK
\(\widehat{ACB}=\widehat{KCE}\)
Do đó: ΔABC=ΔKEC
Suy ra: BC=EC
A B C E D Xét tam giác ABC và tam giác DEC có
CB=CE(gt)
góc BCA = góc ECD ( đđ )
CA=CD (gt)
=> tam giác ABC = tam giác DEC (cgc)
=> góc CDE = góc CAB
b) ta có tam giác ABC = tam giác DEC (cmt)
=> AD=DC=3(cm) (cctư)
góc ABC= góc DEC = 40o
a: Xét tứ giác AEDB có
C là trung điểm của AD
C là trung điểm của EB
Do đó: AEDB là hình bình hành
Suy ra: AB//DE
=>DE\(\perp\)AC
hay \(\widehat{CDE}=90^0\)
b: DC=AC=3(cm)
\(\widehat{DEC}=\widehat{ABC}=40^0\)
a) xét tam giác ABC và tam giác DCE có:
AC=CD(gt)
góc ACB = góc DCE (2 góc đối đỉnh)
BC=CE(gt)
=> tan giác ABC = tam giác DEC(c-g-c)
=>góc BAC = góc EDC=90 độ(2 góc tương ứng)
b)Vì tam giác ABC = tam giác DEC
=>AC=CD=3 cm(2 cạnh tương ứng)
Xét tam giác ABC vuông tại A có:
góc ABC+ góc ACB=90độ
40độ + góc ACB=90độ
góc ACB=50độ
=>góc DCE=50độ(vì góc ACB= góc DCE do 2 góc đối đỉnh)
Vậy DC=3 cm;góc DCE=50độ
d)
ta có: tam giác BAD=BED(CH-GN)=> AD=DE
xét tam giác FAD và tam giác CED có:
AF=CE(gt)
FAD=DEC=90
AD=DE(tam giác BAD=BED)
=> tam giác FAD=CED(c.g.c)
=> ADF=EDC
=> F;D;E thẳng hàng
Bạn tự vẽ hình nha
a.
Xét tam giác ABD và tam giác EBD có:
BD là cạnh chung
DBA = DBE (BD là tia phân giác của ABE)
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
b.
- AB = EB (tam giác ABD = tam giác EBD) => B thuộc đường trung trực của AE
- AD = ED (tam giác ABD = tam giác EBD) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE
c.
Xét tam giác ADF và tam giác EDC có:
FAD = CED ( = 900 )
AD = ED (tam giác ABD = tam giác EBD)
FDA = CDE (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
Tam giác ADF vuông tại A
=> FD là cạnh lớn nhất
=> AD < FD
mà FD = CD (tam giác ADF = Tam giác EDC)
=> AD < CD
d.
ADE + EDC = 1800 (2 góc kề bù)
mà EDC = ADF (tam giác ADF = tam giác EDC)
=> ADE + ADF = 1800
=> ADE và ADF là 2 góc kề bù
=> DE và DF là 2 tia đối nhau
=> D , E , F thẳng hàng
Chúc bạn học tốt
Tam giác ABC vuông tại A có C = 450
=> Tam giác ABC vuông cân tại A có AD là tia phân giác
=> AD là đường cao của tam giác ABC vuông cân tại A
BAD = DAC = \(\frac{BAC}{2}\) = \(\frac{90^0}{2}\) = 450
mà ACB = 450 (gt)
=> BAD = ACB
=> 1800 - BAD = 1800 - ACB
=> BAE = BCF
Xét tam giác EAB và tam giác BCF có:
EA = BC (gt)
EAB = BCF (chứng minh trên)
AB = CF (gt)
=> Tam giác EAB = Tam giác BCF (c.g.c)
=> EB = BF (2 cạnh tương ứng)
BEA = FBC (2 góc tương ứng)
=> BEA + EBC = FBC + EBC
mà BEA + EBC = 900 (Tam giác DEB vuông tại D)
=> FBC + EBC = 900
=> BE _I_ BF
a/ Xét tam giác AMC và tam giác DMB có:
Góc AMC=BMD(đối đỉnh)
BM=MC(trung tuyến AM)
AM=MD(gt)
=> Tam giác AMC=tam giác DMB(c-g-c)
b/ Vì tam giác AMC=tam giác DMB(câu a)
=>Góc BDM=CAM(góc tương ứng)
=> BD song song với AC.
Mà AC vuông góc với AB(tam giác ABC vuông tại A)
=> BD vuông góc với AB.
=> Góc ABD=90 độ.
c/ Xét tam giác ABD và tam giác BAC có:
Góc BAC=ABD=90 độ
BD= AC(cạnh tương ứng của tam giác AMC=tam giác DMB)
AB chung
=> Tam giác ABD=tam giác BAC( c-g-c)
c/ AM là trung tuyến tam giác ABC
=> AM<BC
Ta có hình vẽ:
A B C D E
a) Xét Δ BCA và Δ ECD có:
CA = CD (gt)
BCA = ECD (đối đỉnh)
CB = CE (gt)
Do đó, Δ BCA = Δ ECD (c.g.c)
=> CAB = CDE = 90o (2 góc tương ứng)
b) Có: AC = DC = 3 (gt)
Δ ABC vuông tại A có: ABC + BCA = 90o
=> 40o + BCA = 90o
=> BCA = 90o - 40o = 50o = DCE (đối đỉnh)