K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ΔDEC vuông tại D(ED\(\perp\)BC tại D)

nên \(\widehat{DEC}+\widehat{C}=90^0\)(Hai góc nhọn phụ nhau)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{C}=90^0\)(Hai góc nhọn phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{DEC}=\widehat{ABC}\)

 

19 tháng 3 2021

Bạn ơi bạn giúp mik câu b lun ik

16 tháng 3 2016

(mình k pk kẻ hình bn nhé)

ta có Scbe=1/2*AB*EC=1/2*ED*BC

suy ra AB.EC=BC.DE

10 tháng 2 2018

kho ua

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Lời giải:

a. Xét tam giác $DEC$ và $ABC$ có:
$\widehat{C}$ chung

$\widehat{EDC}=\widehat{BAC}=90^0$ 

$\Rightarrow \triangle DEC\sim \triangle ABC$ (g.g)

b. 

Từ tam giác đồng dạng phần a suy ra $\frac{DE}{DC}=\frac{AB}{AC}(1)$

Vì $AD$ là phân giác của góc $\widehat{A}$ nên:

$\frac{BD}{DC}=\frac{AB}{AC}(2)$

Từ $(1); (2)\Rightarrow \frac{DE}{DC}=\frac{BD}{DC}$

$\Rightarrow DE=BD$ (đpcm)

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Hình vẽ:

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔACB có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm; CD=40/7cm

a) Ta có: \(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=25\)

Do đó: \(BC^2=AB^2+AC^2\)(=25)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC