K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2022

a) Tam giác ABC vuông tại A (gt).

=> A; B; C cùng thuộc đường tròn đường kính BC. (1)

Xét đường tròn đường kính MC: 

\(\in\) đường tròn đường kính MC (gt).

=> \(\widehat{MDC}=90^o\) hay \(\widehat{BDC}=90^o.\)

Tam giác BDC vuông tại D (\(\widehat{BDC}=90^o\)).

=> B; D; C cùng thuộc đường tròn đường kính BC. (2)

Từ (1); (2) => A; B; C; D cùng thuộc đường tròn đường kính BC.

b) Xét tam giác ABC có:

+ O là trung điểm BC (gt).

+ M là trung điểm AC (gt).

=> OM là đường trung bình.

=> OM // AB (Tính chất đường trung bình).

Mà AB \(\perp\) MC (AB \(\perp\) AC).

=> OM \(\perp\) MC.

Xét đường tròn đường kính MC:  OM \(\perp\) MC (cmt); M \(\in\) đường tròn đường kính MC (gt).

=> OM là tiếp tuyến. 

20 tháng 4 2016

Hình bạn tự vẽ nha

a) Xét đường tròn đường kính MC

Ta có góc MDC=90 độ (góc nội tiếp chắn nửa dt)

Hay góc BDC = 90 độ

Xét tứ giác BADC có 

Góc BAC =90 ĐỘ (GT)

Góc BDC =90 độ (cmt)

Mà hai đỉnh của góc này ở vị trí  kề nhau do đó tứ giác BADC nt đường tròn ĐK BC

tâm O của dt là trung điểm BC

b)Xét dt đk BC có 

Góc ADB=GÓC  ACB (hai góc nt cùng chắn cung AB)(1)

Xét đường dt đường kính MC có góc MDN= GÓC MCN (hai góc nt cùng chắn cung MN)

hay Góc BMN  = GÓC ABC (2) 

Từ (1) (2) suy ra Góc ADB = Góc BDN (= góc ABC)

=> BD là phần giác góc ADN (đpcm)

c)Xét tam giác ABC có

AM=MC(GT)

OB=OC (=BÁN KÍNH CỦA DT NGOẠI TIẾP TỨ GIÁC BADC)

=> OM lad đtb của tam giác ABC

Suy ra OM//AB (t/c Đtb)

Do đó Góc OMC = 90 độ

Suy ra OM là tt của dt dk MC

d)Xét dt dk MC có

Góc MNC = 90 dộ (góc nt chắn nửa dt)

Hay góc PNC =90 độ

Xét Tam giác BPC CÓ

BD vuông góc PC ( góc BDC =  90) (cmt)

AC vuông góc với PB (góc ABC =90)(GT)

Mà hai đường thẳng này cắt nhau tại M do đó M là trực tâm của tam giắc BPC

Mặc khác PN vuông góc BC (Góc BNC = 90 ĐỘ) (cmt)

Do đó PN sẽ đi qua M => Ba điểm P,N,C thẳng hàng

--------------------------------------------------Hết------------------------------------------

Bài làm còn nhiều thiếu xót đặc biệt là cach trình bày mặt dù tớ hiểu mong các góp  ý kiến đẻ mình hoàn thiện hơn

a: Gọi I là trung điểm của CM

Xét (I) có

ΔCDM nội tiếp

CM là đường kính

Do đó: ΔCDM vuông tại D

=>góc CDM=góc CDB=90 độ

Xét tứ giác ABCD có

góc CAB=góc CDB=90 độ

=>ABCD nội tiếp

b: Xét ΔCAB có CO/CB=CM/CA=1/2

nên OM//AB

=>OM vuông góc AC tại M

=>OM là tiếp tuyến của (I)

31 tháng 8 2023

a) Để chứng minh A, B, C, D cùng thuộc một đường tròn, ta cần chứng minh tứ giác ABCD là tứ giác nội tiếp. Ta có:

- Góc BAD = góc BAC (cùng chắn cung BC)

- Góc BCD = góc BCA (cùng chắn cung BA)

Do đó, góc BAD + góc BCD = góc BAC + góc BCA = 90 độ (vì tam giác ABC vuông tại A)

Suy ra, tứ giác ABCD là tứ giác nội tiếp.

 

b) Để chứng minh OM là tiếp tuyến của đường tròn đường kính MC, ta cần chứng minh OM vuông góc với MC. Ta có:

- Góc OMB = góc ONB (cùng chắn cung OB)

- Góc ONB = góc MNB (do tam giác MNB vuông tại N)

- Góc MNB = góc MCB (do tam giác MCB vuông tại C)

- Góc MCB = góc ACB (do tam giác ABC vuông tại A)

Do đó, góc OMB = góc ACB

Suy ra, OM vuông góc với MC.

Vậy OM là tiếp tuyến của đường tròn đường kính MC.

23 tháng 4 2022

Xét (O) có

ΔCDM nội tiếp

CM là đường kính

DO đó: ΔCDM vuông tại D

Xét tứ giác ABCD có 

ˆCDB=ˆCAB=900CDB^=CAB^=900

Do đó: ABCD là tứ giác nội tiếp

b: ˆBCA=ˆADBBCA^=ADB^

mà ˆADB=ˆKCAADB^=KCA^

nên ˆBCA=ˆKCABCA^=KCA^

hay CA là tia phân giác của góc KCB

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn nàyb/  Cho MO = 2R CMR tam giác MAB đều 2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn3/ Cho nửa đường tròn (O) đường kính AB....
Đọc tiếp

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) 

a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này

b/  Cho MO = 2R CMR tam giác MAB đều 

2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn

3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp 

4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn

Giải giúp mk vs mk đang cần gấp

1

Bài 2:

ΔOBC cân tại O

mà OK là trung tuyến

nên OK vuông góc BC

Xét tứ giác CIOK có

góc CIO+góc CKO=180 độ

=>CIOK là tứ giác nội tiếp

Bài 3:

Xét tứ giác EAOM có

góc EAO+góc EMO=180 độ

=>EAOM làtứ giác nội tiếp