Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác ACBM có:
Góc BAC=90 (vì ABC vuông tại A)
BMC=90 (góc nội tiếp chắn nửa đường tròn )
=> BAC+BMC=180 => ACBM nội tiếp đ.tr
b) Tứ giác BNME nội tiếp trong đường tròn đường kính BE nên:
góc ABN=AME (cùng bù với góc NME)
Mà góc AME=ABC (góc nội tiếp cùng chắn cung AC)
Nên ABN=ABC => BA là tia phân giác của góc CBN.
c)
( tam giác KBC có hai đường cao BA và CM cắt nhau tại E
=> E là trực tâm tam giác KBC => KE vuông góc với BC (1)
( góc EDB=90 góc nội tiếp chắn nửa đường tròn) => ED vuông góc với BC (2)
(1) và (2) ta có ba điểm K, E, D thẳng hàng và KD vuông với BC
a,ta có góc MAB=90°; MNB=90°(gt);(góc nội tiếp chắn 1/2đtròn)
xét tứ giác AMNB có góc MAN+MNB=90°+90°=180°
suy ra AMNB nội tiếp
b, ta có góc CAB=90°(gt); CPB=90°( góc nội tiếp chắn 1/2đtròn)
xét tứ giác CPAB có góc CAB=CPB=90°
suy ra CPAB nội tiếp ( hai góc bằng nhau cùng chắn cung CB)
suy ra góc BCA=BPA(1)
góc PBA=PCA(2)
mà góc MPN=ACB=1/2sđcung MN(3)
góc PCA=PNM=1/2sđcung PM(4)
từ 1,3 suy ra góc ACB=MPN
từ 2,4 suy ra góc PNM=PBA
xét hai tam giác PAB và PMN có
góc APB=MPN(cmt)
góc PNM=PBA(cmt)
suy ra hai tam giác đó đồng dạng (đpcm)
c, ta có góc PDN=PCN=1/2sđ cung PN(1)
góc PAC=PBC(CPAB nội tiếp)(2)
mà góc PBC+PCB=90°(3)
từ 1,2,3 suy ra góc DAC+ADE=90°
suy ra DN vuông với AC
xét hai tam giác PCM và ECG có góc C chung
góc CEG=CPM=90°
suy ra hai tam giác đó đồng dạng
suy ra PC/EC=CM/CG
suy ra PC.CG=EC.CM(đpcm)