K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 9 2021

D là điểm nào em?

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Lời giải:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$ (cm)

Áp dụng hệ thức lượng trong tam giác vuông: 

$BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8$ (cm) 

$CH=BC-BH=5-1,8=3,2$ (cm)

$\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}$

$\Rightarrow \frac{BD}{BD+CD}=\frac{3}{7}$

Hay $\frac{BD}{BC}=\frac{3}{7}\Rightarrow BD=\frac{3}{7}.BC=\frac{3}{7}.5=\frac{15}{7}$ (cm)

$CD=BC-BD=5-\frac{15}{7}=\frac{20}{7}$ (cm)

$HD=BD-BH=\frac{15}{7}-1,8=\frac{12}{35}$ (cm)

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Hình vẽ:

11 tháng 10 2023

\(BC=\sqrt{3^2+4^2}=5\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{12}{5}cm\)

\(AD=\sqrt{bc\left(1-\left(1-\dfrac{a}{b+C}\right)^2\right)}=\dfrac{4\sqrt{3}}{7}\)

11 tháng 10 2023

Bạn giải kỹ giúp mình dc ko ạ

 

1: AH=4,8cm

BC=căn 3^2+4^2=5cm

=>AH=3*4/5=2,4cm

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hcn

=>AH=EF=2,4cm