K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)

4 tháng 5 2020

Bài này bạn tự kẻ hình giúp mình nha!

1. Xét tam giác AMB và tam giác CMD có:

AM = CM ( M là trung điểm của AC )

AMB = CMD ( 2 góc đối đỉnh )

BM = DM (gt)

=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)

=> BAM = DCM ( 2 góc tương ứng)

=> DCM = 90o  => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )

2. 

Xét tam giác AMD và tam giác CMB có:

AM = CM ( Theo 1.)

AMD = CMB ( 2 góc đối đỉnh )

DM = BM (gt)

=> tam giác AMD = tam giác CMB ( c.g.c)

=> AD = BC (2 cạnh tương ứng) (dpcm)

=> ADM = CBM (2 góc tương ứng)

Mà góc ADM và và góc CBM ở vị trí so le trong

=> AD // BC (dpcm)

3. Xét tam giác AEN và tam giác BCN có:

AN=BN ( N là trung điểm của AB)

ANE = BNC ( 2 góc đối đỉnh )

NE = NC (gt)

=> Tam giác AEN = tam giác BCN ( c.g.c)

=> AE = BC ( 2 cạnh tương ứng )        (1)

=>  EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC         (2)

Theo 2. ta có :  +) AD=BC        (3)

                         +) AD // BC      (4)

Từ (1) và (3) Suy ra AE = AD  (5)

Từ (2) và (4) Suy ra A,E,D thẳng hàng    (6)

Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)

5 tháng 5 2020

sorry bn nha

mk lm xong rùi

a: Xét tứ giác ABCD có

m là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD//BC

b: ABCD là hình bình hành

=>AB//CD
=>CD vuông góc AC

c: Xét tứ giác ABNC có

AB//NC

AC//BN

=>ABNC là hình bình hành

=>BN=AC; AB=NC

Xét ΔBAM vuông tại A và ΔNCM vuông tại C có

MA=MC

BA=CN

=>ΔBAM=ΔNCM

a) Xét ΔΔBMC và ΔΔDMA có:

BM = DM (gt)

BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)

MC = MA (suy từ gt)

=> ΔΔBMC = ΔΔDMA (c.g.c)

=> BC = DA (2 cạnh tương ứng)

b) Vì ΔΔBMC = ΔΔDMA (câu a)

nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)

Xét ΔΔDCA và ΔΔBAC có:

CA chung

CADˆCAD^ = ACBˆACB^ ( cm trên)

DA = BC (cm trên)

=> ΔΔDCA = ΔΔBAC (c.g.c)

=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)

Do đó CD ⊥⊥ AC

c) .................

7 tháng 4 2020

              Giải

a) Xét ΔBMC và ΔDMA có:

BM = DM (gt)

BMC\(\widehat{BMC}\) = \(\widehat{DMA}\)(đối đỉnh)

MC = MA (suy từ gt)

=> ΔBMC = ΔDMA (c.g.c)

=> BC = DA (2 cạnh tương ứng)

b) Vì ΔBMC = ΔDMA (câu a)

nên \(\widehat{BCA}=\widehat{CAD}\)\(\widehat{CAD}\)(2 góc t ư) và BC = DA (2 cạnh t ư)

Xét ΔDCA và ΔBAC có:

CA chung

\(\widehat{CAD}\)\(\widehat{ACB}\)(cm trên)

DA = BC (cm trên)

=> ΔDCA = ΔBAC (c.g.c)

=> \(\widehat{DCA}\) = \(\widehat{BAC}\)= 90 \(^0\) (góc t ư)

Do đó CD  AC

 c,Vì BN // AC (gt) => \(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)\(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)

Xét tam giác BND vuông tại N có:

NM là đường trung tuyến ứng vs cạnh huyền BD => NM=\(\frac{1}{2}\)BC=BM

Xét 2 tam giác vuông: ΔABM(\(\widehat{A}\)=90\(^0\))ΔABM(\(\widehat{A}\)=90\(^0\))và ΔCNM(\(\widehat{C}\)=90\(^0\))ΔCNM(\(\widehat{C}\)=90\(^0\)) có:

AM = CM (gt)

NM = BM (cmt)

=> ΔABM=ΔCNM(ch−1cgv) (đpcm)

# mui #

26 tháng 12 2018

nè 

) Xét ΔΔBMC và ΔΔDMA có:

BM = DM (gt)

BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)

MC = MA (suy từ gt)

=> ΔΔBMC = ΔΔDMA (c.g.c)

=> BC = DA (2 cạnh tương ứng)

b) Vì ΔΔBMC = ΔΔDMA (câu a)

nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)

Xét ΔΔDCA và ΔΔBAC có:

CA chung

CADˆCAD^ = ACBˆACB^ ( cm trên)

DA = BC (cm trên)

=> ΔΔDCA = ΔΔBAC (c.g.c)

=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)

Do đó CD ⊥⊥ AC

a) Xét ΔΔBMC và ΔΔDMA có:

BM = DM (gt)

BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)

MC = MA (suy từ gt)

=> ΔΔBMC = ΔΔDMA (c.g.c)

=> BC = DA (2 cạnh tương ứng)

b) Vì ΔΔBMC = ΔΔDMA (câu a)

nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)

Xét ΔΔDCA và ΔΔBAC có:

CA chung

CADˆCAD^ = ACBˆACB^ ( cm trên)

DA = BC (cm trên)

=> ΔΔDCA = ΔΔBAC (c.g.c)

=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)

Do đó CD ⊥⊥ AC

c) .................