K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

1 tháng 3 2019

a, Sử dụng hệ thức giữa cạnh góc vuông và hình chiếu lên cạnh huyền và cạnh huyền trong tam giác vuông HBA và HCA

b, Tương tự a) và áp dụng hệ thức giữa đường cao và hình chiếu cạnh góc vuông lên cạnh huyền trong tam giác vuông ABC

28 tháng 7 2019

Gợi ý:  A F E ^ = A H E ^  (tính chất hình chữ nhật và  A H E ^ = A B H ^  (cùng phụ  B H E ^ )

24 tháng 2 2023

Ta có: \(\widehat{C_1}=\widehat{A_1}\)(cùng phụ với \(\widehat{B_1}\)\(\left(1\right)\)

Xét tứ giác AEHF có: \(\widehat{A}=\widehat{E}=\widehat{F}=\widehat{H}=90^o\)

=> tứ giác AEHF là h.c.n

=> \(\widehat{A_1}=\widehat{E_1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{E_1}=\widehat{C_1}\)

vì \(\widehat{E_1}+\widehat{BEF}=180^o\)

\(\Rightarrow\widehat{C_1}+\widehat{BEF}=180^o\) mà 2 góc đối nhau

=> tứ giác BEFC nội tiếp

23 tháng 9 2016

dsfger