K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H cso HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

c: \(\left(\dfrac{AB}{AC}\right)^2=\dfrac{AB^2}{AC^2}=\dfrac{HB\cdot BC}{HC\cdot BC}=\dfrac{HB}{HC}\)

b: \(MA\cdot MB+NA\cdot NC\)

\(=MH^2+NH^2=AH^2\)

28 tháng 7 2017

a) AM.AB = AN.AC
△AHB vuông tại H, đường cao HM, △AHC vuông tại H, đường cao HN
⇒AM.AB = AN.AC = AH^2 (hệ thức về cạnh và đường cao...)
b) HB.HC = MA.MB + NA.NC
- Tam giác ABC vuông tại A, đường cao AH
suy ra HB.HC = AH^2 (hệ thức về cạnh và đường cao...)
mà tứ giác AMHN là hcn, suy ra AH(^2) = MN(^2)
- △AHB vuông tại H, đường cao HM, △AHC vuông tại H, đường cao HN
suy ra MA.MB + NA.NC = HM(^2) + (HN^2)= (MN^2)
từ đó suy ra điều phải c/m
c) (HB/HC)=((AB/AC))(^2)
((AB/AC))(^2)=((AB^2)/AC(^2)) = (BH.BC/CH.BC)=(HB/HC)

a: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

b: Xét ΔHAB vuông tại H có HM là đường cao

nên MA*MB=HM^2

ΔHAC vuông tại H có HN là đường cao

nên NA*NC=HN^2

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

=>AH=MN

=>MN^2=AH^2=HB*HC

=>HB*HC=MA*MB+NA*NC

b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(\left\{{}\begin{matrix}AM\cdot AB=AH^2\left(1\right)\\AM\cdot MB=MH^2\end{matrix}\right.\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(\left\{{}\begin{matrix}AN\cdot AC=AH^2\left(2\right)\\NA\cdot NC=NH^2\end{matrix}\right.\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

Xét ΔHNM vuông tại H có 

\(NM^2=HN^2+HM^2\)

hay \(HB\cdot HC=AM\cdot MB+AN\cdot NC\)

25 tháng 7 2018

a) Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(AH^2=AM\cdot AB\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(AH^2=AN\cdot AC\left(2\right)\)

Từ(1) và (2) ta được: \(AM\cdot AB=AN\cdot AC\)

b) Ta có: MHNA là hình chữ nhật(pn tự cm nha cái này dễ)

\(\Rightarrow MH=AN\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(HN^2=AN\cdot NC\)

Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(HM^2=AM\cdot MB\)

Áp dụng hệ thức lượng trong \(\Delta vAHN\), ta có:

\(AN^2+HN^2=AH^2\)

\(MH=AN\)

\(\Rightarrow MH^2+HN^2=AH^2\)

\(\Rightarrow BM\cdot MA+AN\cdot NC=BH\cdot HC\)

c) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)

d) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\Rightarrow AC^4=HC^2\cdot BC^2\)

\(\Rightarrow AC^4=NC\cdot AC\cdot BC^2\Rightarrow AC^3=NC\cdot BC^2\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\Rightarrow AB^4=HB^2\cdot BC^2\)

\(\Rightarrow AB^4=BM\cdot AB\cdot BC^2\Rightarrow AB^3=BM\cdot BC^2\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)

6 tháng 7 2017

bạn tự vẽ hình nha

áp dụng hệ thức lượng trong tam giác vuông ABCco \(AB^2=BA'^2\cdot BC,AC^2=A'C^2\cdot BC\)

                                                                                     \(\Rightarrow\frac{AB^2}{AC^2}=\frac{BA'}{A'C}\Rightarrow\frac{AC^4}{AB^4}=\frac{A'C^2}{A'B^2}\) (1) 

mà trong tam giác vuông AA'B có\(BA'^2=BF\cdot AB\)

 trong tam giác vuông AA'C có \(A'C^2=EC\cdot AC\)  

thay vào (1) ta co \(\frac{AC^4}{AB^4}=\frac{EC\cdot AC}{BF\cdot AB}\Rightarrow\frac{AC^3}{AB^3}=\frac{EC}{BF}\left(DPCM\right)\) 

b,de dang chung minh duoc tam giac BMD~BAC 

SUY RA \(\frac{BD}{BC}=\frac{BM}{BA}=\frac{MD}{AC}\) (2)

tuong tu tam giac NDC~ABC 

SUY RA \(\frac{DC}{BC}=\frac{NC}{AC}=\frac{ND}{AB}\)(3)

nhan (2) voi (3) ta co \(\frac{BD\cdot DC}{BC^2}=\frac{BM\cdot ND}{AB^2}=\frac{MD\cdot NC}{AC^2}=\frac{BM\cdot ND+MD\cdot NC}{AB^2+AC^2}\)

suy ra \(BD\cdot DC=BM\cdot ND+MD\cdot NC\) 

de dang cm duoc tu giac AMDN  la hcn suy ra MA =ND,MD=AN

THAY VAO BIEU THUC TREN TA CO \(BD\cdot DC=MA\cdot MB+NA\cdot NC\left(DPCM\right)\)

18 tháng 6 2019

a/ Có tứ giác MHNA là hcn\(\Rightarrow\widehat{AMN}=\widehat{AHN}\) (góc nt cùng chắn \(\stackrel\frown{AN}\))

\(\widehat{AHN}=\widehat{ACH}\) (cùng phụ vs \(\widehat{HAN}\))

\(\Rightarrow\widehat{AMN}=\widehat{ACH}\)

Xét \(\Delta AMN\)\(\Delta ACB\) có:

\(\widehat{AMN}=\widehat{ACH}\left(CMT\right)\)

\(\widehat{MAN}\) : góc chung

\(\Rightarrow\Delta AMN\sim\Delta ACB\left(gg\right)\)

\(\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\Leftrightarrow AM.AB=AN.AC\)

b/ Có \(HB=\frac{AB^2}{BC}\)

\(HC=\frac{AC^2}{BC}\)

\(\Rightarrow\frac{HB}{HC}=\frac{\frac{AB^2}{BC}}{\frac{AC^2}{BC}}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2\)

c/ Xét \(\Delta AHB\) vuông tại H,\(MH\perp AB\)

\(\Rightarrow MA.MB=MH^2\)(1)

tương tự\(\Rightarrow NA.NC=HN^2\) (2)

\(HB.HC=AH^2=MN^2\) (2 đường chéo bằng nhau)(3)

Xét \(\Delta MHN\) vuông tại H

\(\Rightarrow MH^2+HN^2=MN^2=AH^2\)(4)

Từ (1),(2),(3),(4)\(\Rightarrow HB.HC=MA.MB+NA.NC\)

16 tháng 10 2023

a: BC=BH+CH

=4+9=13

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>AH=6

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\\AC=\sqrt{9\cdot13}=3\sqrt{13}\end{matrix}\right.\)

b: ΔHAB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1), (2) suy ra \(AM\cdot AB=AN\cdot AC\)

16 tháng 10 2023

Có hình vẽ ko ạ