- Xét tam giác ABC và HBA có góc A = góc H =90 độ & góc B chung . => tam giác ABC đồng dạng tam giác HBA (G-G)
- Xét tam giác AHB và tam giác CHA có AHB =CHA =90 độ & góc HAB = HCA ( cùng phụ góc B) Suy ra tam giác AHB đồng dạng CHA (g-g). Suy ra AH/CH =BH/AH hay AB2=BH.CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có \(\Delta ABC\approx\Delta HBA\)vì hai tam giác vuông này có chung góc nhọn B
Lại có \(\Delta ABC\approx\Delta HAC\)có chung góc nhọn C
\(\Rightarrow\Delta HBA\approx\Delta HAC\)(tính chất bắc cầu)
b)Ta có AM là trung tuyến nên \(BM=\frac{1}{2}\left(BH+CH\right)=\frac{13}{2}\)
\(HM=BM-BH=\frac{13}{2}-4=\frac{5}{2}\)
Vì \(\Delta HBA\approx\Delta HAC\)nên
\(\frac{HB}{HA}=\frac{HA}{HC}\Rightarrow\frac{4}{HA}=\frac{HA}{9}\)
\(\Rightarrow HA^2=36\Rightarrow HA=6\)
\(S_{ABC}=\frac{\frac{5}{2}\cdot6}{2}=\frac{15}{2}\left(cm^2\right)\)
a, đồng dạng trường hợp góc - góc
b, Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền nên ta có :
AM = BM = CM = BC/2 = (BH + CH )/ 2 = 13/2 = 6,5 ( cm )
ta có : HM = BM - BH = 6,5 - 4 = 2,5 ( cm )
áp dụng định lí Pytago cho tam giác vuông AHM ta có : \(AH^2=AM^2-HM^2\Rightarrow AH=\sqrt{AM^2-HM^2}=\sqrt{6,5^2-2,5^2}=6.\) (cm )
\(S_{AMH}=\frac{AH.HM}{2}=\frac{6.2,5}{2}=7,5\left(cm^2\right)\)
Xét 2 tam giác ABC và HBA, ta có
A= H= 900
B chung
=> tam giác ABCđồng dạng với tam giác HBA
b) Áp dụng định lí pi ta go, ta có
BC2 = AB2+AC2
BC2= 212 +282=1225
=> BC=35
... CM tương tự để ra AM và AH
A B C H a) Xét tam giác ABC và tam giác HBA
góc CAB = góc AHB = 90 độ
góc B chung
=> tg ABC đồng dạg với tam giác HBA (g.g)
b) bn viết ra đi mình giải cho
A B H C
Xét \(\Delta ABC\&\Delta HBAc\text{ó}\)
^BAC=^BHA\(\left(=90^o\right)\)
^ABC=^HBA(Góc chung)
=>\(\Delta ABC~\Delta HBA\left(g.g\right)\)
a) bn lm đc rồi nên mk bỏ qua nhé
b) Áp dụng định lý Putago vào tam giác vuông ABC ta có
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=21^2+28^2=1225\)
\(\Leftrightarrow\)\(BC=\sqrt{1225}=35\)cm
\(\Delta ABC\)vuông tại \(A\)có \(AM\)là trung tuyến
\(\Rightarrow\)\(AM=\frac{1}{2}BC=17,5\)cm
\(\Delta HBA~\Delta ABC\) (câu a)
\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{21.28}{35}=16,8\)cm
c) \(\Delta BAC\)có \(EM\)\(//\)\(AC\) (cùng vuông góc với AB)
\(\Rightarrow\)\(\frac{AE}{AB}=\frac{CM}{CB}\) (1)
\(\Delta CAB\) có \(MF\)\(//\)\(AB\) (cùng vuông góc với AC)
\(\Rightarrow\) \(\frac{AF}{AC}=\frac{BM}{BC}\) (2)
\(\Delta ABC\)có \(AM\)là trung tuyến
\(\Rightarrow\)\(MB=MC\)(3)
Từ (1), (2) và (3) suy ra:
\(\frac{AE}{AB}=\frac{AF}{AC}\)
\(\Rightarrow\)\(EF\)\(//\)\(BC\) (định lý Ta-lét đảo)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
DO đó:ΔABC\(\sim\)ΔHBA
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
c: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó:ADHE là hình chữ nhật
Suy ra: AH=DE
mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)
nên DE=8cm