K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2022

\(BC=\dfrac{15^2}{9}=25\left(cm\right)\)

BH=25-9=16cm

\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

AB=căn(16^2+12^2)=20cm

C=16+12+20=28+20=48cm

Xét ΔABC vuông tại A có sin B=AC/BC=3/5

nên góc B=37 độ

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

27 tháng 6 2021

Theo bài ra ta có 

AB + AH + BH = 30 

AC + CH + AH = 40

AB + BC + AC = 50 

Khi đó AB + AH + BH + AC + CH + AH = 70 

=> AB + AC + (BH + CH) + 2AH = 70

=> AB  + AC + BC + 2AH = 70

=> 50 + 2AH = 70

=> AH = 10

Vậy AH = 10 cm

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

13 tháng 1 2018

a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông

∆AHC và ∆AHB ta có:

AE.AC =  A H 2 = AD.AB => ∆AHC  ~ ∆AHB(c.g.c)

b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm

Trong ∆AHB vuông ta có:

tan A B C ^ = A H H B =>  A B C   ^ ≈ 56 0 , S A D E = 27 13 c m 2

 

 

 

2 tháng 12 2021

a) Áp dụng HTL :

\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)

12 tháng 12 2018

Theo hệ thức lượng trong tam giác vuông ta có 

\(15^2=9\cdot BC\)

\(BC=\frac{225}{9}=25\left(cm\right)\)

\(\Rightarrow9+HC=25\Rightarrow HC=16\left(cm\right)\)

Theo định lý Pytago ta có

\(AC=\sqrt{BC^2-AB^2}=\sqrt{400}=20\left(cm\right)\)

Ta có đặt \(\widehat{ABC}=\alpha\)

\(\sin\alpha=\frac{20}{25}=0,8\)

Tới đây mình chịu do kết quả nó hơi kỳ...

5 tháng 7 2021

A B C H

Hình vẽ chỉ mang tính chất minh họa

Áp dụng định lý Py-ta-go vào tam giác vuông ABC:

\(AB=\sqrt{BC^2-AC^2}\)

\(\Rightarrow AB=\sqrt{100^2-60^2}\)

\(\Rightarrow AB=80\left(cm\right)\)

Chu vi tam giác ABC= AB+AC+BC=80+60+100=240(cm)

Xét tam giác ABC vuông tại A, đương cao AH có:

\(AH=\frac{AB.AC}{BC}\)

\(\Rightarrow AH=\frac{80.60}{100}\)

\(\Rightarrow AH=48\left(cm\right)\)

\(BH=\frac{AB^2}{BC}\)

\(\Rightarrow BH=\frac{80^2}{100}=64\left(cm\right)\)

 \(CH=BC-BH\)

\(\Rightarrow CH=100-64=36\left(cm\right)\)

Chu vi tam giác ABH= AB+BH+AH=80+64+48=192(cm)

Chu vi tam giác ACH=AC+CH+AH=60+36+48=144(cm)