K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

A B C F A' E
Theo hệ thức lượng trong tam giác vuông :

\(\Delta ABC\)có :\(BA'=\frac{AB^2}{BC};CA'=\frac{AC^2}{BC}\)

\(\Delta BDA\)có :\(BF=\frac{BA'^2}{AB}=\left(\frac{AB^2}{BC}\right)^2:AB=\frac{AB^3}{BC^2}\)

\(\Delta DAC\)có :\(CE=\frac{CA'^2}{AC}=\left(\frac{AC^2}{BC}\right)^2:AC=\frac{AC^3}{BC^2}\)

\(\Rightarrow\frac{CE}{BF}=\frac{AC^3}{BC^2}:\frac{AB^3}{BC^2}=\frac{AC^3}{AB^3}\)

5 tháng 11 2016

cái này toán lớp mấy vậy bạn

5 tháng 7 2017

bạn tự vẽ hình nha ^.^

trong tam giác vuông ABC có \(AH^2=BH\cdot CH\) \(\Rightarrow AH^4=BH^2\cdot CH^2\)

ma \(HB^2=BE\cdot AB,HC^2=FC\cdot AC\)

suy ra \(AH^4=BE\cdot AB\cdot FC\cdot AC\)

nhung \(AB\cdot AC=AH\cdot BC\)

nen \(AH^4=BE\cdot FC\cdot AH\cdot BC\Rightarrow AH^3=BE\cdot FC\cdot BC\)(1)

de dang chung minh duoc tam giac BEH ~tam giac HFC

suy ra\(\frac{BE}{HF}=\frac{EH}{FC}\Rightarrow BE\cdot FC=EH\cdot HF\)thay vao (1) ta cung co dpcm

6 tháng 7 2017

cám ơn bạn nhiều nha =)

10 tháng 8 2020

Cho tam giác ABC vuông tại A( AB<AC ), có đường cao AH, trung tuyến AM Gọi E và F lần lượt la hình chiếu của H lên AB và AC; I và K lần lượt là trung điểm của HB và HC. CM :

10 tháng 8 2020

đề kiểu gì thế ?

Điểm E; Điểm F; Điểm H đây vậy bạn ơi

5 tháng 2 2020

Gọi AM cắt DE tại I 

Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)

\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)

Do \(\Delta AID\)vuông tại I suy ra 

\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)

\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)

\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)

Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra 

\(\widehat{MFC}=\widehat{ACF}\)

Mà 

5 tháng 2 2020

\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF

Mà MB=MC suy ra \(\Delta BFC\) có  FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\)  \(\Delta BFC\)vuông tại F hay  \(BF\perp CF\left(đpcm\right)\)

6 tháng 7 2017

bạn tự vẽ hình nha

áp dụng hệ thức lượng trong tam giác vuông ABCco \(AB^2=BA'^2\cdot BC,AC^2=A'C^2\cdot BC\)

                                                                                     \(\Rightarrow\frac{AB^2}{AC^2}=\frac{BA'}{A'C}\Rightarrow\frac{AC^4}{AB^4}=\frac{A'C^2}{A'B^2}\) (1) 

mà trong tam giác vuông AA'B có\(BA'^2=BF\cdot AB\)

 trong tam giác vuông AA'C có \(A'C^2=EC\cdot AC\)  

thay vào (1) ta co \(\frac{AC^4}{AB^4}=\frac{EC\cdot AC}{BF\cdot AB}\Rightarrow\frac{AC^3}{AB^3}=\frac{EC}{BF}\left(DPCM\right)\) 

b,de dang chung minh duoc tam giac BMD~BAC 

SUY RA \(\frac{BD}{BC}=\frac{BM}{BA}=\frac{MD}{AC}\) (2)

tuong tu tam giac NDC~ABC 

SUY RA \(\frac{DC}{BC}=\frac{NC}{AC}=\frac{ND}{AB}\)(3)

nhan (2) voi (3) ta co \(\frac{BD\cdot DC}{BC^2}=\frac{BM\cdot ND}{AB^2}=\frac{MD\cdot NC}{AC^2}=\frac{BM\cdot ND+MD\cdot NC}{AB^2+AC^2}\)

suy ra \(BD\cdot DC=BM\cdot ND+MD\cdot NC\) 

de dang cm duoc tu giac AMDN  la hcn suy ra MA =ND,MD=AN

THAY VAO BIEU THUC TREN TA CO \(BD\cdot DC=MA\cdot MB+NA\cdot NC\left(DPCM\right)\)