K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 7 2017

Lời giải:

Bài này chủ yếu sử dụng công thức lượng giác.

Vì sin của hai góc bù nhau thì bằng nhau (công thức lượng giác)

\(\Rightarrow \sin \beta=\sin AMC\)\((1)\)

Tam giác $ABC$ vuông tại $A$ có $M$ là trung điểm của $BC$ nên

\(BM=MC=AM\Rightarrow \triangle AMC\) cân tại $M$

\(\Rightarrow \widehat {MAC}=\widehat{MCA}\Rightarrow \widehat{MAC}+\widehat{MCA}=2\widehat{MCA}=2\alpha\)\((2)\)

Từ \((1),(2)\)

\(\Rightarrow \sin \beta=\sin AMC=\sin (180-\widehat{MAC}-\widehat{MCA})=\sin (180-2\sin \alpha)=\sin (2\alpha)\)

\(\Leftrightarrow 1+\sin \beta=1+\sin 2\alpha\)

\(\Leftrightarrow 1+\sin \beta=\cos ^2\alpha+\sin ^2\alpha+\sin 2\alpha=\cos ^2\alpha+\sin^2\alpha+2\sin \alpha\cos \alpha\)

\(\Leftrightarrow 1+\sin \beta=(\cos \alpha+\sin \alpha)^2\) (đpcm)

26 tháng 9 2018

Bài giải ở trên đo

26 tháng 9 2018

Ah chăc câu này ghi nhầm đề nên ghi lại câu kia đung không. Thôi xem câu trên đi

26 tháng 9 2018

Ta co:

Vì tam ABC vuông tại A co D là trung điểm BC nên \(\widehat{MAC}=\widehat{MCA}=\frac{\widehat{AMB}}{2}\)

\(\Rightarrow\beta=2\alpha\)

Từ đây ta co:

\(cos^2\alpha-sin^2\alpha=cos\left(2\alpha\right)=cos\beta\)

7 tháng 7 2016

A B C M H

Ta có : \(\left(sin\alpha+cos\alpha\right)^2=sin^2\alpha+cos^2\alpha+2sin\alpha.cos\alpha\) (1)

Lại có : \(sin^2\alpha=\frac{AB^2}{BC^2}\) ; \(cos^2\alpha=\frac{AC^2}{BC^2}\) \(\Rightarrow sin^2\alpha+cos^2\alpha=\frac{AB^2+AC^2}{BC^2}=\frac{BC^2}{BC^2}=1\) (2)

Kẻ đường cao AH (H thuộc BC)

Ta sẽ chứng minh \(sin\beta=2sin\alpha.cos\alpha\)

Xét tam giác vuông HMA có : \(sin\beta=\frac{AH}{AM}\) 

Lại có \(AH=\frac{AB.AC}{BC}\) ; \(AM=\frac{BC}{2}\) \(\Rightarrow sin\beta=\frac{\frac{AB.AC}{BC}}{\frac{BC}{2}}=\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=2sin\alpha.cos\alpha\)(3)

Từ (1) , (2) , (3) ta có điều phải chứng minh.

 

17 tháng 10 2018

Bạn tham khảo ở hình dưới, thay trung điểm M trong hình thành trung điểm J là ok so với đề nha :)

Cho tam giác ABC vuông tại A,AB < AC trung tuyến AM,góc ACB = a góc AMB = b,Chứng minh: (sina + cosa)^2 = 1 + sinb,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9