K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

a) Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:

\(AB^2+AC^2=BC^2\) (định lí Py - ta - go).

=> \(AB^2+8^2=10^2\)

=> \(AB^2=10^2-8^2\)

=> \(AB^2=100-64\)

=> \(AB^2=36\)

=> \(AB=6\left(cm\right)\) (vì \(AB>0\)).

b) Xét 2 \(\Delta\) vuông \(AIB\)\(DIB\) có:

\(\widehat{BAI}=\widehat{BDI}=90^0\left(gt\right)\)

Cạnh IB chung

\(\widehat{ABI}=\widehat{DBI}\) (vì \(BI\) là tia phân giác của \(\widehat{ABC}\))

=> \(\Delta AIB=\Delta DIB\) (cạnh huyền - góc nhọn).

c) Theo câu b) ta có \(\Delta AIB=\Delta DIB.\)

=> \(\left\{{}\begin{matrix}AB=DB\\AI=DI\end{matrix}\right.\) (các cạnh tương ứng).

=> \(B\)\(I\) thuộc đường trung trực của \(AD.\)

=> \(BI\) là đường trung trực của \(AD.\)

d) Xét 2 \(\Delta\) vuông \(AEI\)\(DCI\) có:

\(\widehat{EAI}=\widehat{CDI}=90^0\left(gt\right)\)

\(AI=DI\left(cmt\right)\)

\(\widehat{AIE}=\widehat{DIC}\) (vì 2 góc đối đỉnh)

=> \(\Delta AEI=\Delta DCI\) (cạnh góc vuông - góc nhọn kề).

=> \(AE=DC\) (2 cạnh tương ứng).

+ Ta có:

\(\left\{{}\begin{matrix}AB+AE=BE\\DB+DC=BC\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB=DB\left(cmt\right)\\AE=DC\left(cmt\right)\end{matrix}\right.\)

=> \(BE=BC.\)

\(\)=> \(\Delta BEC\) cân tại \(B.\)

\(BI\) là đường phân giác của \(\widehat{EBC}\left(gt\right)\)

=> \(BI\) đồng thời là đường cao của \(\Delta BEC.\)

=> \(BI\perp EC\left(đpcm\right).\)

Chúc bạn học tốt!

21 tháng 3 2020

Mình cho hình nhỏ hơn chút.

15 tháng 5 2016

A C B I D E

15 tháng 5 2016

a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:

AB2=BC2-AC2=102-82=62

=> AB=6 cm.

b/ Xét tam giác ABI và tam giác DBI có:

BI chung

Góc IAB=IDB=90 độ

Góc IBA=IBD(phân giác IB)

=> Tam giác ABI=tam giác DBI(ch-gn)

c/ Gọi O là giao điểm AD và IB.

Vì tam giác ABI=tam giác DBI(câu b)

=> AB=BD(cạnh tương ứng)

Xét tam giác OBA và tam giác OBD có:

BO chung

Góc OBD=OBA(phân giác BI)

AB=BD(cmt)

=> Tam giác OBA=tam giác OBD(c-g-c)

=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ

=> BI là đường trung trực của AD.

d/ Xét tam giác IAE và tam giác IDC có:

Góc AIE=DIC(đối đỉnh)

Góc IAE=IDC=90 độ

IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)

=> Tam giác IAE=tam giác IDC(g-c-g)

=> AE=DC(cạnh tương ứng)

Mà AB=BD

=> BE=BC hay Tam giác BEC cân tại B

=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC

Mà BI vuông góc với AD nên BI cũng vuông góc với EC.

Gọi N là giao điểm của BI và EC.

15 tháng 5 2016

tam giác ABC , góc A = 90 độ

=> AB+ AC= BC( định lí Pi-ta-go)

=> AB= 102  - 82  = 36

=> AB = 6

xét tam giác AIB và tam giác DIB có:

góc A = góc D (= 90 độ)

góc ABI = góc DBI ( BI là phan giác )

=> tam giác ABI = tam giác DBI ( cạnh huyền - góc nhọn) (*)

gọi Bi giao AD = N

(*) => BA =BD (1)

tam giác BAN = tam giác BDN ( c.g.c)

=> góc BNA = góc BND ; AN = ND => BI là trung trực

(*)=> AI = ID => tam giác AID cân tại I => góc DAI = góc ADI

Tam giác ADE = tam giác ADC ( g.c.g) => AE =  DC (2)

từ (1) và (2) => BE = BC 

BI giao EC = M

tam giác BEM = tam Giác BCM (c.g.c) => góc BME = góc BMC

=> BI vuông góc EC.

26 tháng 5 2021

undefined

CHÚC EM HỌC TỐT NHAok

31 tháng 5 2021

ai help mik bài này đc ko

 

31 tháng 5 2021

a) ΔABC vuông tại A 

Áp dụng định lý Pi-ta-go ta có: 

BC2 = AC2+AB2

⇒BC2-AC2=AB2

⇒100-64=AB2

⇒36=AB

⇒AB=6(cm)

b) Xét ΔAIB và ΔDIB có:

góc BAI = góc BDI (= 90 độ)

Chung IB

góc IBA = góc IBD (gt)

⇒ ΔAIB = ΔDIB (ch-gn)

⇒ BA = BD (2 cạnh tương ứng)

c)  Gọi giao BI và AD là F

Xét ΔABF và ΔDBF có:

AB = DB (cmb)

góc ABF = góc DBF (gt)

chung BF

⇒ ΔABF = ΔDBF (c.g.c)

⇒ FA = FD (2 cạnh tương ứng)

góc BFA = góc BFD (2 góc tương ứng) mà góc góc này kề bù nên góc BFA = góc BFD = 90 độ ⇒ BF⊥AD

Vì FA = FD, BF⊥AD ⇒ BI là đường trung trực của AD

d) Gọi giao của BI và EC là G

Xét ΔEBC có: CA⊥BE, ED⊥BC nên I là trọng tâm của ΔEBC nên BG là đường cao thứ 3 của ΔEBC ⇒ BG⊥EC ⇒ BI⊥EC

 

21 tháng 4 2022

Tham khảo:

 

 

a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:

AB2=BC2-AC2=102-82=62

=> AB=6 cm.

b/ Xét tam giác ABI và tam giác DBI có:

BI chung

Góc IAB=IDB=90 độ

Góc IBA=IBD(phân giác IB)

=> Tam giác ABI=tam giác DBI(ch-gn)

c/ Gọi O là giao điểm AD và IB.

Vì tam giác ABI=tam giác DBI(câu b)

=> AB=BD(cạnh tương ứng)

Xét tam giác OBA và tam giác OBD có:

BO chung

Góc OBD=OBA(phân giác BI)

AB=BD(cmt)

=> Tam giác OBA=tam giác OBD(c-g-c)

=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ

=> BI là đường trung trực của AD.

d/ Xét tam giác IAE và tam giác IDC có:

Góc AIE=DIC(đối đỉnh)

Góc IAE=IDC=90 độ

IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)

=> Tam giác IAE=tam giác IDC(g-c-g)

=> AE=DC(cạnh tương ứng)

Mà AB=BD

=> BE=BC hay Tam giác BEC cân tại B

=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC

Mà BI vuông góc với AD nên BI cũng vuông góc với EC.

Gọi N là giao điểm của BI và EC.

9 tháng 5 2022

tôi ko biết

a: Xét ΔAIB vuông tại A và ΔDIB vuông tại D có 

IB chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔAIB=ΔDIB

b: Ta có: ΔAIB=ΔDIB

nên AI=DI; BA=BD

Ta có: IA=ID

nên I nằm trên đường trung trực của AD(1)

Ta có: BA=BD

nên B nằm trên dường trung trực của AD(2)

Từ (1) và (2) suy ra BI⊥AD

c:Xét ΔAIE vuông tại A và ΔDIC vuông tại D có

IA=ID

\(\widehat{AIE}=\widehat{DIC}\)

Do đó: ΔAIE=ΔDIC

Suy ra: AE=DC

Xét ΔBEC có

BA/AE=BD/DC

nên AD//EC

d: Xét ΔIEC có IE=IC

nên ΔIEC cân tại I

19 tháng 6 2020

a) Tính AB?

Xét \(\Delta ABC\) vuông tại A ta có :

BC2 = AB2 + AC2(định lí Pitago)

=> 102 = AB2 + 82

=> AB2 = 102 - 82 = 100 - 64 = 36

=> AB = 6(cm)

b) Xét \(\Delta AIB\) và \(\Delta DBI\) có :

BI chung

\(\widehat{IAB}=\widehat{BDI}=90^0\)

\(\widehat{AIB}=\widehat{DBI}\)(BI là tia phân giác)

=> \(\Delta AIB=\Delta DBI\left(ch-gn\right)\)

c) Ta có : \(\Delta AIB=\Delta DBI\) 

=> BA = BD(hai cạnh tương ứng) => B là đường trung trực của AD (1)

IA = ID(hai cạnh tương ứng) => I là đường trung trực của AD (2)

Từ (1) và (2) => B và I là đường trung trực của AD hay BI là đường trung trực của AD

d) Ta có : \(CA\perp BE\)và  \(ED\perp BC\) hay CA và ED là đường cao của \(\Delta BEC\)

=> I là trực tâm của tam giác BEC => BI vuông góc với EC

a: AB=căn 10^2-8^2=6cm

b: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có

BI chung

góc ABI=góc DBI

=>ΔBAI=ΔBDI

c: ΔBAI=ΔBDI

=>BA=BD và ID=IA

=>BI là trung trực của AD

d: Xét ΔBEC có

ED,CA là đường cao

ED cắt CA tại I

=>I là trực tâm

=>BI vuông góc EC

1: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có

BI chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔBAI=ΔBDI

Suy ra:BA=BD

2: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có

IA=ID

\(\widehat{AIE}=\widehat{DIC}\)

Do đó: ΔAIE=ΔDIC

Suy ra: AE=DC
Ta có: BA+AE=BE

BD+DC=BC

mà BA=BD

và AE=DC

nên BE=BC

hay ΔBEC cân tại B

3: Xét ΔBEC có BA/AE=BD/DC

nên AD//EC