Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F O
a) \(\Delta\)ABC vuông tại A có trung tuyến AO nên ^OAC = ^OCA. Do ^OCA = ^BAH (Cùng phụ ^HAC)
Nên ^OAC = ^BAH = ^ AEF (Do tứ giác AEHF là hcn)
Mà ^AEF + ^AFE = 900 => ^OAC + ^AFE = 900 => OA vuông góc EF (đpcm).
b) Biến đổi tương đương:
\(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)
\(\Leftrightarrow BE\sqrt{BC.CH}+CF\sqrt{BC.BH}=AB.BC\)(Nhân mỗi vế với \(\sqrt{BC}\))
\(\Leftrightarrow BE\sqrt{AC^2}+CF\sqrt{AB^2}=AB.BC\) (Hệ thức lương)
\(\Leftrightarrow BE.AC+CF.AB=AB.BC\)
\(\Leftrightarrow BH.AH+CH.AH=AB.BC\)(Vì \(\Delta\)EBH ~ \(\Delta\)HAC; \(\Delta\)FHC ~ \(\Delta\)HBA)
\(\Leftrightarrow AH\left(BH+CH\right)=AB.BC\)
\(\Leftrightarrow AH.BC=AB.AC\) (luôn đúng theo hệ thức lượng)
Vậy có ĐPCM.
Qua A kẻ đường thẳng vuông góc với EF tại M, cắt BC tại N.Gọi I là giao của AH và EF.
CMR: góc IAE = góc IEA.
Có tam giác MAE vuông tại M => góc MAE + góc MEA= 90 độ Hay góc NAB + góc IEA = 90 độ
Có tam giác ABH vuông tại H => góc ABH + góc HAE= 90 độ Hay góc NBA + góc IAE = 90 độ
=> góc NAB= góc NBA (phụ với hai góc bằng nhau)
=> tam giác NAB cân tại N
=> NA=NB
CM: NA=NC
=> NB=NC
=> N là trung điểm của BC
=> N trùng với I, M trùng với K.
mà AM vuông góc với EF
=> AK vuông góc với EF
Xét tam giác AEF vuông tại A có AK là đường cao
=> 1/AK2 = 1/AE2 + 1/AF2
Cm AE=HF, EH=AF
=> đpcm
a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy
1: Xét ΔABH vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
2: \(AE\cdot AB+AF\cdot AC=AH^2+AH^2=2AH^2\)
4: \(4\cdot OE\cdot OF=2OE\cdot2OF=FE\cdot AH=AH^2\)
\(HB\cdot HC=AH^2\)
Do đó: \(4\cdot OE\cdot OF=HB\cdot HC\)