Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, △ABC△ABC có: D là trung điểm của BCBC, E là trung điểm của AC
⇒DE là đường trung bình của △ABC
⇒{DE=12AB(1)DE//AB(2)
(1)⇒DE=12.6=3
b, Có: FF là điểm đối xứng với DD qua EE
⇒DE=DF
⇒DF=2DE=2.12AB=AB(3)
(theo (1)(2),(3)⇒ABDF(2),(3)⇒ABDF là hình bình hành □◻
c, ABDF là hình bình hành ⇒{AF//BD(4)AF=BD
Mặt khác D là trung điểm của BC nên BD=BC ⇒AF=BC(5)
(4),(5)⇒ADCF là hình bình hành
Ta lại có: {AB⊥AC(ˆA=90∘)AB//DF⇒AC⊥DF
Vậy hình bình hành ADCFcó hai đường chéo vuông góc hay là ADCFlà hình thoi
Có ADCF là hình thoi ⇒AE=12AC=4
△ADE có ˆE=90∘ (AC⊥DF)
⇒AE2+DE2=AD2(Định lý Pythagore)
thay AE=4AE=4 và DE=3DE=3 tính được AD=√42+32=√25=5
d, Để ADCF là hình vuông thì AD⊥BC
Mà có DC=DB=12BC(gt) nên AD⊥BC khi và chỉ khi AD là đường trung trực của BC
Tức là AB=AC hay △ABC vuông cân tại A
Điều kiện để ADCF là hình vuông là △ABC vuông cân tại A
sai thì thôi nha
a: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
mà \(\widehat{ADC}=90^0\)
nên ADCF là hình chữ nhật
Em tham khảo tại đây nhé.
Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath
a, Trong △ABC có:
D là trung điểm của BC, E là trung điểm của AC.
⇒ DE là đường trung bình của △ABC.
⇒ DE = 1/2AB (1)
và: DE // AB (2)
Từ (1) suy ra: DE = 1/2 . 6 = 3.
b, Ta có: F là điểm đối xứng với D qua E nên:
DE = DF
⇒ DF = 2DE = 2 . 1/2AB = AB (3) (theo (1)
Từ (2),(3) suy ra: ABDF là hình bình hành.
c, Do ABDF là hình bình hành nên:
AF // BD (4) và: AF = BD
Mặt khác, ta có: D là trung điểm của BC
=> BD = BC. Mà: AF = BD (cmt)
=> BC = AF (5).
Từ (4) và (5) suy ra: Tứ giác ADCF là hình bình hành.
Ta lại có: AB⊥AC (góc A = 90o)
và: AB // DF
⇒ AC⊥DF.
Vậy, hình bình hành ADCF có hai đường chéo vuông góc hay:
ADCF là hình thoi.
Ta có: ADCF là hình thoi ⇒AE = 1/2AC = 4.
Xét △ADE có: góc E = 90∘ (AC⊥DF)
⇒ AE2 + DE2 = AD2 (Định lý Pythagore)
thay số: 42 + 32 = AD2
16 + 9 = AD2
25 = AD2 => AD = 5 cm.
d, Để ADCF là hình vuông thì: AD⊥BC.
Mà: DC = DB = 1/2BC (gt) nên:
AD⊥BC khi và chỉ khi AD là đường trung trực của BC hay:
AB = AC
=> △ABC vuông cân tại A.
Vậy, điều kiện để ADCF là hình vuông là △ABC vuông cân tại A