Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
* Hình tự vẽ
a)
Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm
b)
Xét tam giác DBC, ta có:
BK là trung tuyến ứng với cạnh CD ( gt )
CA là trung tuyến ứng với cạnh BD ( AB = AD )
BK giao với CA tại E
=> E là trọng tâm của tam giác BDC
=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm
c)
Xét tam giác BDC, ta có:
CA là trung tuyến ứng với cạnh BD
CA là đường cao ứng với cạnh BD
=> Tam giác BDC cân tại C
=> CB = CD
Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC
B A C
Theo đề ra: Góc A = 50 độ
Góc B = 60 độ
Góc C = 70 độ
=> Góc A < góc B < góc C
=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)
b) Do \(AD=AB\) nên \(CA\) là trung tuyến
Mà \(AC\cap BK=E\) với \(BK\) là trung tuyến
\(\Rightarrow E\) là trọng tâm \(\Delta BCD\)
\(\Rightarrow CE=\dfrac{2}{3}AC=\dfrac{2}{3}.6=4\left(cm\right)\Rightarrow AE=2\left(cm\right)\)
c) Ta có \(CA\) vừa là trung tuyến vừa là đường cao \(\Delta BCD\)
\(\Rightarrow\Delta BCD\) cân tại \(C\Rightarrow CB=CD\)
a, áp dụng định lí py-ta-go ta có:
\(BC^2\)=\(AB^2+AC^2\)
=> \(AC^2=BC^2-AB^2\)
=> \(AC^2=100-36\)
=> \(AC^2=64\)cm => AC=8 cm
vậy AC=8 cm
vì BC>AC>AB(10cm>8cm>6cm)
=> \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)(góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm
b, Xét 2 t.giác vuông BCA và DCA có:
AB=AD(gt)
AC cạnh chung
=> \(\Delta\)BCA=\(\Delta\)DCA(cạnh góc vuông-cạnh góc vuông)
=> BC=DC(2 cạnh tương ứng)
=>t.giác BCD cân tại C (đpcm)
c, xét t.giác BCD : A là trung điểm BD, K là trung điểm của BC, AC và DK cắt nhau tại M
=> M là trọng tâm của \(\Delta\)BCD => MC=\(\frac{2}{3}\)AC(tính chất 3 đường trung tuyến)
=> MC=\(\frac{2}{3}\).8\(\approx\)5,3 cm
vậy MC\(\approx\)5,3 cm
a) tam giác ABC vuông tại A, áp dụng định lí py-ta-go có:
AB2+AC2=BC2
82+62=BC2
BC2=64+36
BC2= 100
BC=\(\sqrt{100}\)
BC=10cm
vậy BC=10 cm
b) vì BE là đường trung tuyến nên:
EC=AE=\(\dfrac{6}{2}\)=3cm
vậy EC=AE=3cm
c) xét tam giác ABC vuông tại A và tam giác ADC vuông tại A có:
AB=AD(gt)
AC(cạnh chung)
góc BAC= góc DAC=90o
do đó tam giác ABC=tam giác ADC (c-g-c)
suy ra BC=CD (hai cạnh tương ứng)
Tự vẽ hình nha !!!
a) Áp dụng định lý Py-ta-go ta có
AB2 + AC2 = BC2
=> 82 + 62 = BC2
=> BC = 10 cm
b) Ta có BA = AD
=> AC là trung tuyến của BD
Vì \(AC\Omega BK=\left\{E\right\}\)
=> E là trọng tâm của tam giác BDC
=> \(\frac{EC}{AC}=\frac{2}{3};\frac{AE}{AC}=\frac{1}{3}\)mà AC = 6 cm
=> EC = 4 cm ; AE = 2 cm
c) Xét tam giác BAC và tam giác DAC có
\(\hept{\begin{cases}BA=AD\\\widehat{CAB}=\widehat{CAD=90^{\text{o}}}\\AC\text{ chung}\end{cases}}\Rightarrow\Delta BAC=\Delta DAC\left(c.g.c\right)\)
=> BC = DC (cạnh tương ứng)