Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: AB/3=AC/4=k
=>AB=3k; AC=4k
Ta có: \(AB^2+AC^2=BC^2\)
=>\(25k^2=100\)
=>k=2
=>AB=6cm; AC=8cm
b: Xét ΔBAC có BM là phân giác
nên MA/AB=MC/BC
=>MA/3=MC/5
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{MA}{3}=\dfrac{MC}{5}=\dfrac{8}{8}=1\)
=>MA=3cm
A B C D E
Dễ dàng CM được tam giác EBD vuông tại D và có đường cao BA
Ta có góc E1 = góc B1=góc B2=1/2 goc B
Theo công thức tg2a=2tga/(1-tg^2a) ta có
tgB=2tgE1/(1-tg^2E1) <=> 4/3 = 2.\(\frac{6}{EA}\). \(\frac{1}{1-\frac{36}{EA^2}}\)=\(\frac{12}{EA}\).\(\frac{EA^2}{EA^2-36}\)=\(\frac{12EA^2}{EA^2-36}\)
Giải PT ta có EA= 12 \(6\sqrt{5}\)
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: góc AHG=góc BHD=90 độ-góc HBD=góc ACB
góc AGH=1/2*sđ cung AB=góc ACB
=>góc AHG=góc AGH
=>ΔAGH cân tại A