Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AC=\sqrt{20^2-16^2}=12\left(cm\right)\)
BD là phân giác
=>AD/AB=CD/BC
=>AD/4=CD/5=(AD+CD)/(4+5)=12/9=4/3
=>AD=16/3cm; CD=20/3cm
b: Xét ΔABD vuông tại A và ΔHCD vuông tại H có
góc ADB=góc HDC
=>ΔABD đồng dạng với ΔHCD
Lời giải:
a.
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-16^2}=12$ (cm)
Áp dụng tính chất tia phân giác:
$\frac{AD}{CD}=\frac{AB}{BC}=\frac{16}{20}=\frac{4}{5}$
$\Rightarrow \frac{AD}{AD+CD}=\frac{4}{9}$
$\Rightarrow \frac{AD}{AC}=\frac{4}{9}\Rightarrow AD=\frac{4}{9}AC=\frac{4}{9}.12=\frac{16}{3}$ (cm)
$CD=AC-AD=12-\frac{16}{3}=\frac{20}{3}$ (cm)
b.
Xét tam giác $ABD$ và $HCD$ có:
$\widehat{BAD}=\widehat{CHD}=90^0$
$\widehat{BDA}=\widehat{CDH}$ (đối đỉnh)
$\Rightarrow \triangle ABD\sim \triangle HCD$ (g.g)
c.
Từ kết quả tam giác đồng dạng phần b suy ra:
$\frac{S_{HCD}}{S_{ABD}}=(\frac{CD}{BD})^2(*)$
Trong đó:
$CD=\frac{20}{3}$
$BD=\sqrt{AB^2+AD^2}=\sqrt{16^2+(\frac{16}{3})^2}=\frac{16\sqrt{10}}{3}(**)$
Từ $(*); (**)\Rightarrow \frac{S_{HCD}}{S_{ABD}}=\frac{5}{32}$
$\Rightarrow S_{HCD}=\frac{5}{32}S_{ABD}=\frac{5}{32}.\frac{AD}{AC}S_{ABC}$
$=\frac{5}{32}.\frac{16}{3.12}.\frac{AB.AC}{2}$
$=\frac{5}{32}.\frac{4}{9}.\frac{16.12}{2}=\frac{20}{3}$ (cm2)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)
Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)
a.
vì tam giác ABC vuông tại A
suy ra AB^2 + AC^2 = BC^2
suy ra 16^2 + AC^2 = 20^2
suy ra AC = 12
vì BD là phân giác góc B
suy ra AD/DC = AB/BC = 16/20 = 4/5
suy ra AD = 4/5.DC
mà AD + DC = AC = 12
suy ra AD = 16/3, DC = 20/3
b.
xét tam giác BAD và tam giác CHD có
góc BDA = CDH (2 góc đối đỉnh)
góc BAD = CHD (= 90)
suy ra tam giác BAD đồng dạng với CHD
c.
xét tam giác BAD vuông tại A
suy ra AB^2 + AD^2 = BD^2
suy ra 16^2 + (16/3)^2 = BD^2
suy ra BD = 16√(10)/3
vì tam giác CHD đồng dạng với BAD
suy ra HD/AD = CD/BD
suy ra HD/(16/3) = (20/3)/(16√(10)/3)
suy ra HD = 2√(10)/3
xét tam giác CHD vuông tại H
suy ra CH^2 + HD^2 = DC^2
suy ra CH^2 + 40/9 = (20/3)^2
suy ra CH = 2√(10)
suy ra SCHD = 1/2.CH.HD
= 1/2.2√(10).2√(10)/3
= 20/3
a.
vì tam giác ABC vuông tại A
suy ra AB^2 + AC^2 = BC^2
suy ra 16^2 + AC^2 = 20^2
suy ra AC = 12
vì BD là phân giác góc B
suy ra AD/DC = AB/BC = 16/20 = 4/5
suy ra AD = 4/5.DC
mà AD + DC = AC = 12
suy ra AD = 16/3, DC = 20/3
b.
xét tam giác BAD và tam giác CHD có
góc BDA = CDH (2 góc đối đỉnh)
góc BAD = CHD (= 90)
suy ra tam giác BAD đồng dạng với CHD
c.
xét tam giác BAD vuông tại A
suy ra AB^2 + AD^2 = BD^2
suy ra 16^2 + (16/3)^2 = BD^2
suy ra BD = 16√(10)/3
vì tam giác CHD đồng dạng với BAD
suy ra HD/AD = CD/BD
suy ra HD/(16/3) = (20/3)/(16√(10)/3)
suy ra HD = 2√(10)/3
xét tam giác CHD vuông tại H
suy ra CH^2 + HD^2 = DC^2
suy ra CH^2 + 40/9 = (20/3)^2
suy ra CH = 2√(10)
suy ra SCHD = 1/2.CH.HD
= 1/2.2√(10).2√(10)/3
= 20/3