Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E K
Giả thiết | AB = AC ; KB = KC ; \(\widehat{A}\)= 90O |
Kết luận | a) Tam giác AKB = AKC b) EC//AK c) CE = CB |
a) Xét \(\Delta AKB\)và \(\Delta AKC\text{ có : }\hept{\begin{cases}AB=AC\\KB=KC\\AK\text{ chung}\end{cases}\left(c.c.c\right)\Rightarrow\Delta AKB=\Delta AKC}\)
\(\Rightarrow\widehat{B}=C\text{ và }\widehat{ BAK}=\widehat{CAK}=\frac{1}{2}\widehat{A}=45^{\text{O}}\left(\text{góc tương ứng}\right)\)mà \(\widehat{B}+\widehat{C}=90^{\text{O}}\left(\widehat{A}=90^{\text{O}}\right)\Rightarrow\widehat{B}=\widehat{C}=45^{\text{O}}\)
=> \(\widehat{BKA}=180^{\text{O}}-\widehat{B}-\widehat{BAK}=90^{\text{O}}\)
=> AK vuông góc với BC
b) Vì góc C vuông
=> Góc B + Góc E = Góc C
=> Góc B + Góc E = 90O
=> Góc E = 45O
Vì góc BAC là góc ngoài của tam giác ACE
=> Góc ACE + Góc E = 90O (vì góc BAC = 90o)
=> Góc ACE = 45o
mà Góc KAC = Góc ACE ( = 45o) và cùng so le trong
=> AK // CE
Ta có hình vẽ:
A B C K E
a/ Xét tam giác AKB và tam giác AKC có:
AB = AC (GT)
BK = CK (GT)
AK: cạnh chung
=> tam giác AKB = tam giác AKC (c.c.c)
Ta có: tam giác AKB = tam giác AKC
=> góc AKB = góc AKC (2 góc tương ứng)
Mà góc AKB + góc AKC = 1800
=> góc AKB = góc AKC = 1800 : 2 = 900
Vậy AK vuông góc BC (đpcm)
b/ Ta có: \(\begin{cases}AK\perp BC\\EC\perp BC\end{cases}\)=> EC // AK (đpcm)
c/ Ta có: AC: chung (1)
Ta có: góc BAC + góc CAE = 1800
hay 900 + CAE = 1800
=> góc CAE = 900
=> góc BAC = góc CAE (2)
Trong tam giác vuông cân ABC có:
góc ABC + góc ACB = 900
Vì tam giác ABC cân nên góc ABC = góc ACB
=> góc ABC = góc ACB = 900:2 = 450
Ta có: góc ACB + góc ACE = 900 (vì góc BCE=900)
hay 450 + góc ACE = 900
=> góc ACE = 450
Vậy góc ACB = góc ACE = 450 (3)
Từ (1),(2),(3) => tam giác ACB = tam giác ACE
=> CE = CB (2 cạnh tương ứng) (đpcm)
hình tự vẽ
a, Xét △AKB và △AKC
Có: BK = KC (gt)
AK là cạnh chung
AB = AC (gt)
=> △AKB = △AKC (c.c.c)
b, Vì △AKB = △AKC (cmt)
=> AKB = AKC (2 góc tương ứng)
Mà AKB + AKC = 180o (2 góc kề bù)
=> AKB = AKC = 180o : 2 = 90o
=> AK ⊥ BC
c, Vì AK ⊥ BC (cmt)
CE ⊥ BC (gt)
=> AK // CE (từ vuông góc đến song song)
a/ Ta có: AB = AC (gt); BK = KC (vì K là trung điểm của BC); AK là cạnh chung
=>> tg AKB = tg AKC (c.c.c)
Ta có: AB = AC (gt) => tg ABC vuông cân tại A
mà K là trung điểm của BC
=>> AK là đường trung trực của tg ABC
=> AK\(\perp\) BC
b/ Ta có: EC \(\perp BC\) (gt) và AK\(\perp BC\) (cmt)
=>> EC // AK
c/ AK là đường cao đồng thời là đường phân giác của tam giác ABC vuông cân tại A
=> \(\widehat{BAK}\) = \(\widehat{KAC}\) = 45 độ
=> tg AKB vuông cân tại B => \(\widehat{KBA}=\widehat{BAK}\) (1)
Ta có: EC // AK (cmt) => \(\widehat{BAK}=\widehat{BEC}\) (2)
Từ (1) vả (2) => \(\widehat{KBA}=\widehat{BEC}\)
=> tg BCE cân tại C =>> CE = CB