K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có tam giác ABC vuông tại A => BC2 = AB2 + AC2

=> AC2 = BC2 - AB2 = 252 - 202 = 625 - 400 = 225

=> AC = 15

5 tháng 3 2015

Vì tam giác ABC vuông tại A => BC^2=AB^2+AC^2 ( theo định lí Pi-ta-go)

                                         <=>   AC^2=BC^2-AB^2

                                         <=>  AC^2=625-400

                                        <=>  AC^2=225

                                          <=>  AC=15

Áp dụng định lý \(Pi-ta -go \) và tam giác vuông \(ABC\) ta có :

\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{AB^2+AC^2}\)

\(=\sqrt{20^2+25^2}=5\sqrt{41}\) \(\left(cm\right)\)

Chu vi \(\Delta ABC\) là :\(AB+AC+BC=20+25+5\sqrt{41}=45+5\sqrt{41}\left(cm\right)\)

13 tháng 3 2021

A B C 25 20 giả thiết tự ghi :v

a) áp dụng định lí Pi - ta - go cho tam giác vuông ABC , ta có :

      AC^2 + AB^2 = BC^2

=>  AC^2 = BC^2 - AB^2

=>  AC^2 = 25^2 - 20^2

=>  AC^2 = 625 - 400

=>  AC^2 = 225

=> AC = 15

13 tháng 3 2021

C B A K phần b nè :

b) áp dụng định lí Pi - ta - go cho tam giác vuông ABC , ta có :

    CK^2 = AK^2 + AC^2

=>CK^2 = 20^2 + 15^2

=>CK^2 = 400 + 225

=>CK^2 = 625

=>CK =25

Lại có :

BC = 25

=> CK = BC

=> Tam giác BCK cân

Nếu sai thì thông cảm :)))

7 tháng 7 2015

a) Ta có: AB2 + AC2 = 202 + 152 = 625

BC2 = 252 = 625

nên AB2 + AC2 = BC2

    Suy ra tam giác ABC vuông do định lí Pi-ta-go đảo

b)    Áp dụng định lí Pitago trong tam giác vuông ACH được:

    HC2 + HA2 = AC2

CH2 = 152 - 122

CH2 = 81

=> CH=9 (cm)

     Áp dụng định lí Pitago trong tam giác vuông AHB được:

                 AH2 + BH2 = AB2

               122 + BH2 = 202

=> BH2 = 202 - 122 = 256

=> BH=16 cm 

7 tháng 7 2015

Hình bạn tự kẻ nhé . 

a)  Ta có AB2+AC2 = 202+152= 625

Lại có BC2 = 252 = 625

=> Tam giác ABC vuông ( Py ta go )

b) Ta có AH là đường cao 

=> Tam giác ABH và tam giác ACH vuông tại H

Áp dụng Py ta go vào tam giác vuông ACH ta được :

AC2=CH2+ AH2

=> 152 = CH2 + 122

=> CH2 =  152 - 122 = 81

=> CH = 9 ( cm)

=> BH = BC-CH = 25- 9 = 16  ( cm)

11 tháng 1 2016

Kẻ AH vuông góc với BC

Ta có: AB2+AC2=152+202=625

BC2=252=625

=>Tam giác ABC vuông tại A

=> SABC=AB.AC/2 hoặc SABC=AH.BC/2

=>AB.AC/2=AH.BC/2

=>AB.AC=AH.BC

=>15.20=AH.25

=>AH=12

Vậy k/c cần tìm là 12 cm

11 tháng 1 2016

no biet minh chua hoc den

13 tháng 8 2016

a)Xét ΔABC có: \(AB^2+AC^2=20^2+15^2=625\)

                          \(BC^2=25^2=625\)

=>ΔABC vuông tại A ( THEO ĐỊNH LÝ PYTAGO ĐẢO)

b)Xét ΔABH vuông tại H(gt)

=> \(AB^2=HB^2+AH^2\) (theo định lý pytago)

=> \(HB^2=AB^2-AH^2=20^2-12^2=256\)

=>HB =16

Có BC=BH+HC

=>HC=BC-BH=25-16=9

 

13 tháng 8 2016

A B C H

a) Xét \(\Delta ABC \) có:

\(BC^2=25^2=625\)

\(AB^2+AC^2=20^2+15^2=625\)

\(\Rightarrow BC^2=AB^2+AC^2\left(=625\right)\)

\(\Rightarrow\)\(\Delta ABC\) vuông tại  A.

b) Xét \(\Delta ABH\) có: \(AH \perp BC\)

\(\Rightarrow\) \(AB^2=AH^2+BH^2\) (Định lí Pytago)

\(20^2=12^2+BH^2\left(AB=20cm\left(gt\right);AH=12cm\left(gt\right)\right)\)

\(\Rightarrow BH^2=20^2-12^2\)

\(BH^2=256\)

\(\Rightarrow BH=\sqrt{256}=16\left(cm\right)\)

 

Ta có:

\(BH+HC=BC\) (H nằm giữa B và C)

\(16+HC=25\left(BH=16cm\left(cmt\right);BC=25cm\left(gt\right)\right)\)

\(\Rightarrow HC=25-16\)

\(HC=9\left(cm\right)\)

 

9 tháng 2 2020

ta có: AB2+BC2=202+152=625

và AC2=625

=> AB2+BC2=AC2

=> tam gics ABC vuông tại B