Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
\(a.\)
\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)
\(\Delta ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)
\(\Delta AHB\) có \(\widehat{HAB}+\widehat{B}+\widehat{AHB}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow\widehat{HAB}+60^0+90^0=180^0\)
\(\Rightarrow\widehat{HAB}=180^0-\left(60^0+90^0\right)=30^0\)
Vậy \(\widehat{HAB}=30^0\)
\(a.\)
\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)
\(\Delta ABC\) có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)
\(\Delta AHB\) có : \(\widehat{AHB}+\widehat{B}+\widehat{HAB}=180^0\) ( tổng ba góc của một tam giác )
\(\Rightarrow90^0+60^0+\widehat{HAB}=180^0\)
\(\Rightarrow\widehat{HAB}=180^0-\left(90^0+60^0\right)=30^0\)
Vậy : \(\widehat{HAB}=30^0\)
Sao đăng nhiều tek bạn. Đăng từng bài thoy!
1/ Ta có hình vẽ:
A B C H D
a/ Xét tam giác ABH và tam giác DBH có:
BH: chung
\(\widehat{AHB}\)=\(\widehat{DHB}\)=900
AH = HD (GT)
Vậy tam giác ABH = tam giác DBH (c.g.c)
=> \(\widehat{ABH}\)=\(\widehat{DBH}\) => BC là phân giác góc ABD
Xét tam giác ACH và tam giác DCH có:
CH: cạnh chung
\(\widehat{AHC}\)=\(\widehat{DHC}\)=900
AH = HD (GT)
Vậy tam giác ACH = tam giác DCH (c.g.c)
=> \(\widehat{ACH}\)=\(\widehat{DCH}\)=> CB là phân giác góc ACD
b/ Ta có: tam giác ABH = tam giác DBH (đã chứng minh trên)
=> BA = BD (2 cạnh tương ứng)
Ta có: tam giác ACH = tam giác DCH (đã chứng minh trên)
=> CA = CD (2 cạnh tương ứng)
c/ Ta có: tam giác ACH = tam giác DCH
=> \(\widehat{ACH}\)=\(\widehat{DCH}\)=450
Trong tam giác CHD có:
\(\widehat{C}\)+\(\widehat{H}\)+\(\widehat{D}\)=1800
450 + 900 + góc D = 1800
=> góc ADC = 450
d/ Đường cao AH phải có thêm điều kiện BH = HC => chứng minh tam giác ABH = CDH để AB//CD
2/ Ta có hình vẽ:
A B C H D
a/ Xét tam giác ABH và tam giác DBH có:
BH: chung
\(\widehat{B}=\widehat{H}=90^0\)
AH = BD (GT)
=> tam giác ABH = tam giác DBH (c.g.c)
b/ Ta có: tam giác ABH = tam giác DBH (câu a)
=> \(\widehat{ABH}\)=\(\widehat{BHD}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // HD (đpcm)
3/ Ta có hình vẽ:
A I M N B C
a/ Xét tam giác ABI và tam giác ACI có:
AB = AC (GT)
BI = CI (GT)
AI: chung
=> tam giác ABI = tam giác ACI (c.c.c)
=> \(\widehat{BAI}\)=\(\widehat{CAI}\) => AI là phân giác \(\widehat{BAC}\)
b/ Xét tam giác AMB và tam giác ANC có:
MB = NC (GT)
\(\widehat{ABC}=\widehat{ACB}\)
Mà góc ABC + ABM = 1800
và góc ACB + ACN = 1800
=> \(\widehat{ABM}\)=\(\widehat{ACN}\)
AB = AC (GT)
=> tam giác AMB = tam giác ANC (c.g.c)
=> AM = AN (2 cạnh tương ứng)
c/ Ta có: tam giác ABI = tam giác ACI
=> \(\widehat{AIB}\)=\(\widehat{AIC}\) (2 góc tương ứng)
Mà \(\widehat{AIB}\)+\(\widehat{AIC}\)=1800
=> \(\widehat{AIB}\)=\(\widehat{AIC}\)=\(\frac{1}{2}\)1800 = 900
Vậy AI vuông góc BC (đpcm)
Làm tiếp mấy câu sau:
4/ Ta có hình vẽ:
O x y t A B M C D H
a/ Xét tam giác OAM và tam giác OBM có:
OA = OB (GT)
\(\widehat{AOM}=\widehat{BOM}\) (GT)
OM: cạnh chung
=> tam giác OAM = tam giác OBM (c.g.c)
b/ Ta có: tam giác OAM = tam giác OBM (câu a)
=> AM = BM (2 cạnh tương ứng)
c/ Gọi giao điểm của AB và OM là N
Xét tam giác OAN và tam giác OBN có:
OA = OB (GT)
\(\widehat{AON}=\widehat{BON}\) (GT)
ON: chung
=> tam giác OAN = tam giác OBN (c.g.c)
=> \(\widehat{ONA}=\widehat{ONB}\) (2 góc tương ứng)
Mà \(\widehat{ONA}+\widehat{ONB}=180^0\)
=> \(\widehat{ONA}=\widehat{ONB}=\frac{1}{2}180^0=90^0\)
=> OM vuông góc AB hay OH vuông góc AB
Ta có: AB // CD, mà AB \(\perp\)OH = >CD \(\perp\)OH (đpcm)
5/ Ta có hình vẽ:
x O y A B C D E
a/ Xét tam giác OAD và tam giác OBC có:
OA = OB (GT)
\(\widehat{AOB}\): góc chung
OA+AC=OB+BD => OC = OD
Vậy tam giác OAD = tam giác OBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)
b/ Ta có: AC = BD (GT) (1)
Ta có: \(\widehat{OAD}\)+\(\widehat{DAC}\)=1800 (kề bù)
Ta có: \(\widehat{OBC}\)+\(\widehat{CBD}\)=1800 (kề bù)
Mà \(\widehat{OAD}\)=\(\widehat{OBC}\) => \(\widehat{DAC}\)=\(\widehat{CBD}\) (2)
Ta có: góc C = góc D (tam giác OAD = tam giác OBC) (3)
Từ (1),(2),(3) => tam giác EAC = tam giác EBD
c/ Xét tam giác OAE và tam giác OBE có:
OA = OB (GT)
OE: cạnh chung
AE = BE (do tam giác EAC = tam giác EBD)
=> tam giác OAE = tam giác OBE (c.c.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác góc xOy
6/ Ta có hình vẽ:
A B C D
a/ Xét tam giác ADB và tam giác ADC có:
AB = AC (GT)
AD: cạnh chung
BD = DC (GT)
=> tam giác ADB = tam giác ADC (c.c.c)
b/ Ta có: tam giác ADB = tam giác ADC (câu a)
=> \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng)
Mà \(\widehat{ADB}\)+\(\widehat{ADC}\)=1800
=> \(\widehat{ADB}=\widehat{ADC}\)=900
Vậy AD \(\perp\) BC (đpcm)