Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABC và ΔHBA có
góc B chung
góc BAC=góc BHA
=>ΔABC đồg dạng với ΔHBA
b: ΔABC vuông tại A mà AH là đường cao
nên HA^2=HB*HC
c: Xet ΔCAD vuông tại A và ΔCHE vuông tai H co
góc ACD=góc HCE
=>ΔCAD đồng dạng với ΔCHE
=>\(\dfrac{S_{CAD}}{S_{CHE}}=\left(\dfrac{CA}{CH}\right)^2=\left(\dfrac{8}{6,4}\right)^2=\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\)
A B C 6 8 H E D
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^AHB = 900
^B _ chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
c, tam giác ABC vuông tại A, có đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm
Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )
\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm
d, phải là cắt AC nhé, xem lại đề nhé bạn
a)
Xét \(\Delta ABC\)và \(\Delta HBA\) có:
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta HBA\)
\(\RightarrowĐpcm\)
b)
Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{C}\)là góc chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta HAC\)
\(\Rightarrow\Delta HBA\)đồng dạng với \(\Delta HAC\) (bắc cầu)
Vì \(\Delta HBA\)đồng dạng với \(\Delta HAC\)
\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\Rightarrowđpcm\)
a)Xét tam giác ABC vuông tại A(gt),có:
AB^2+AC^2=BC^2(Đl pytago)
Thay số:36+64=BC^2
=>BC= căn 100=10cm
Xét tam giác ABC có BD là phân giác góc ABC(gt),có:
AB/AC=AD/DC(Tính chất đường phân giác trong tam giác)
<=>AB/AB+AC=AD/AD+DC(Tính chất tỉ lệ thức)
Thay số:6/16=AD/8
<=>16AD=48
<=>AD=3cm
Vì D thuộc AC(gt)
=>AD+DC=AC
Thay số:3+DC=8
<=>DC=5cm
b) Xét tam giác ABC vuông tại A(gt),có:
SABC=(AB.AC)/2=24cm^2
Mà SABC=(AH.BC)/2
=>(AH.10)/2=24
<=>AH=24.2÷10=4,8cm
Xét tam giác ABC đồng dạng tam giác HAC có:
+Góc C chung
+Góc AHC=góc BAC=90 độ
=>tam giác ABC đồng dạng tam giác HAC(g.g)
=> AH/AB=CH/AC(Cặp cạnh tương ứng)
Thay số : 4,8/6=CH/8
=>CH=4,8.8÷6=6,4cm
c)
Hình thì bạn tự vẽ nha
a)Xét tam giác ABC và tam giá HBA, có:
Góc B chung
Góc BAC = góc BHA
--> Tam giác ABC ~ Tam giác HBA
b)Xét tam giác AHB và tam giác HCA, có
Góc A - góc H
Góc ABH = Góc AHC
-->tam giác AHB ~ tam giác AHC
-->AH/HB = HC/AH
-->AH.AH = HB.HC
-->AH^2=HB.HC(đpcm)
c)
+) Áp dụng định lý PTG vào tam giác vuông ABC, có :
BC^2=AB^2 + AC^2
<--> 6^2 + 8^2 = 100
--> BC = 10(cm)
+)Vì tam giác ABC ~ Tam giác HBA :
AB/HB = BC/BA = AC/HA
-)AB/HB = BC/BA
= 6/HB =10/6
--> HB = 6.6/10
-->HB = 3,6(cm)
-)BC/BA =AC/HA
=10/6 = 8/HA
--> HA = 6.8/10
--> HA = 4,8 (cm)
d) tính tỉ số diện tích thì bạn ghi tỉ số đồng dạng ra rồi bình phương tỉ số đó lên
là đc tỉ số đồng dạng ạ
xét tam giác ABC có BC2=ab2 + ac2
thay số BC2=62+82
BC2=36+64=100
BC=10(cm)
còn lại mình không bít,xin lỗi
A B C 6 8 H E D F K
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^AHB = 900
^B chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
b, Xét tam giác AHB và tam giác CHA ta có :
^AHB = ^CHA = 900
^ABH = ^HAC ( cùng phụ với ^BAH )
Vậy tam giác AHB ~ tam giác CHA ( g.g )
\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\)
A B C 6 8 H
a, Xét tam giác ABC và tam giác HBA ta có :
^ABC = ^HBA
^BAC = ^BHA = 900
Vậy tam giác ABC ~ tam giác HBA ( g.g )
b, Xét tam giác HAB và tam giác HCA ta có :
^AHB = ^CHA = 900
^BAH = ^HCA ( phụ nhau )
Vậy tam giác HAB ~ tam giác HCA ( g.g )
\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=BH.CH\)
c, Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64\Rightarrow BC=10\)cm
Vì tam giác ABC ~ tam giác HBA ( cma )
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)( tỉ lệ thức )
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=\frac{48}{10}=\frac{24}{5}\)cm
a: ΔACB vuông tại A
mà AH là đường cao
nên AH^2=HB*HC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
CD là phân giác
=>DA/AC=DB/CB
=>DA/4=DB/5=6/9=2/3
=>DA=8/3cm
=>\(CD=\sqrt{8^2+\left(\dfrac{8}{3}\right)^2}=\dfrac{8}{3}\sqrt{10}\)
Xét ΔHCI vuông tại H và ΔACD vuông tại A có
góc HCI=góc ACD
=>ΔHCI đồng dạng với ΔACD
=>CI/CD=HC/AC
=>\(\dfrac{CI}{\dfrac{8}{3}\sqrt{10}}=\dfrac{6.4}{8}=\dfrac{4}{5}\)
=>\(CI=\dfrac{32}{15}\sqrt{10}\left(cm\right)\)
sin ACH=AB/BC=3/5
=>góc ACH=37 độ
=>góc ACI=18,5 độ
\(S_{ACI}=\dfrac{1}{2}\cdot\dfrac{32}{15}\sqrt{10}\cdot8\cdot sin18.5^0\simeq8,56\left(cm^2\right)\)