K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

A B C D E K I 1 2 1 2

Giả thiết\(\widehat{B_1}=\widehat{B_2};KI=IC;\widehat{A}=90^{\text{o}};AB=BE\)
Kết luận

a)  \(\Delta\)BDA =  \(\Delta\)BDE ; \(DE\perp BC\)

b)  \(\Delta\)ADK =  \(\Delta\)EDC ; KA = CE

c) B ; D ; I thẳng hàng

a) Xét : \(\Delta\)BDA và  \(\Delta\)BDE có : 

\(\hept{\begin{cases}\widehat{B_1}=\widehat{B_2}\\AB=AE\\AD\text{ chung}\end{cases}\Rightarrow\Delta ABD=\Delta BDE\left(c.g.c\right)}\)

=> \(\hept{\begin{cases}AD=DE\left(\text{cạnh tương ứng}\right)\\\widehat{BAD}=\widehat{DEB}=90^{\text{o}}\left(\text{góc tương ứng}\right)\end{cases}}\)

mà \(\widehat{BAD}=\widehat{DEB}=90^{\text{o}}\Rightarrow DE\perp BC\)

b) Xét  \(\Delta\)ADK và  \(\Delta\)EDC có : 

\(\hept{\begin{cases}\widehat{KAD}=\widehat{DEC\left(cmt\right)}\\AD=DE\left(cmt\right)\\\widehat{KDA}=\widehat{CDE}\left(\text{đối đỉnh}\right)\end{cases}}\)=>  \(\Delta\)ADK =   \(\Delta\)EDC => \(\hept{\begin{cases}AK=CE\left(\text{cạnh tương ứng}\right)\\\widehat{DKA}=\widehat{ECD}\left(\text{góc tương ứng}\right)\end{cases}}\) 

c) Lại có : AB = BE (gt) ; AK = CE (câu c)

=>AB + AK = BE + CE

=> BK =  BC

=>  \(\Delta\)BKC cân

=> \(\widehat{K}=\widehat{C}\Rightarrow\widehat{K}-\widehat{DKA}=\widehat{C}-\widehat{ECD}\Rightarrow\widehat{DKI}=\widehat{DCI}\)  =>  \(\Delta\)KCD cân => KD = DC  

Xét  \(\Delta\)KDI và  \(\Delta\)CDI có : 

\(\hept{\begin{cases}DI\text{ chung}\\KI=IC\left(\text{gt}\right)\\KD=DC\end{cases}}\)=> \(\Delta\)KDI và  \(\Delta\)CDI (c.c.c) => \(\widehat{I_1}=\widehat{I_2}\)(góc tương ứng)

mà \(\widehat{I_1}+\widehat{I_2}=180^{\text{o}}\Rightarrow\widehat{I_2}=90^{\text{o}}\Rightarrow DI\perp BC\left(1\right)\)

Xét  \(\Delta\)KBI và  \(\Delta\)CBI có :

\(\hept{\begin{cases}\widehat{B_1}=\widehat{B_2}\\BK=BC\\AI\text{ chung}\end{cases}}\) \(\Delta\)KBI và  \(\Delta\)CBI (c.g.c) => \(\widehat{I_1}=\widehat{I_2}=90^{\text{o}}\)(góc tương ứng) => \(AI\perp BC\left(2\right)\)

Từ (1) và (2) => A;D;I thẳng hàng

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

23 tháng 12 2016

a) ta có: A + ABC + C =180° (đ/l)

=> 90° + ABC + 40° =180°

=> ABC = 180° -( 40°+ 90°)

=> ABC = 50°

Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°

Vậy ABD = 25°

b) xét tam giác BAD và tam giác BED có:

AB = BE ( GT )

BD chung

ABD = CBD ( GT )

=> tam giác BAD = tam giác BED ( c.g.c )

Ta có A = BED = 90° ( 2 góc t.ư)

=> DE vuông góc BC ( vì có 1 góc= 90° )

c) xét tam giác ABC và tam giác EBF có:

AB = BE ( GT )

B chung

A = E = 90°

=> tam giác ABC = tam giác EBF ( g.c.g )

d) ta có tam giác ABC = tam giác EBF ( theo c )

=> BC = BF ( 2 cạnh tương ứng)

Xét tam giác BKC và tam giác BKF có:

BC = BF ( GT )

BK chung

FBK = KBC ( GT )

=> tam giác BKC = tam giác BKF (c.g.c)

=> BKC = BKF ( 2 góc t.ư)

=> BKC + BKF = 180° ( 2 góc kề bù )

=> BKC = BKF = 180° : 2 = 90° = KFC

Vậy 3 điểm K,F,C thẳng hàng

Bn vẽ hình hộ mk nhé!

 

 

 

 

21 tháng 12 2016

A B C D 40

a) Áp dụng tc tổng 3 góc của 1 tg ta có:

góc BAC + ACB + ABC = 180 độ

=>90 + 40 + ABC = 180

=> ABC = 50 độ

mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )

 

11 tháng 1 2018

         Đi đâu mà vội mà vàng

Mà vấp phải đá mà quàng phải dây

5 tháng 12 2018

bn phải ra đề bài thì mọi người mới giúp đc bn chứ

24 tháng 7 2019

A B C D E I O

a, xét tam giác BAE và tam giác BDE có : BE chung

góc ABE = góc DBE do BE là phân giác của góc ABC (gt)

AB = BD (gt)

=> tam giác BAE = tam giác BDE (c-g-c)

b, tam giác BAE = tam giác BDE (câu a)

=> góc BAE = góc BDE (đn)

mà óc BAE = 90 do tam giác ABC vuông tại A (gt)

=> góc BDE = 90 

=> ED _|_ BC (đn)

c, tam giác BAE = tam giác BDE (Câu a)

=> AE = DE (đn)

d,  gọi BE cắt CI tại O 

AB = BD (gt)

AI = DC (gt)

AB + AI = BI 

BD + DC = BC

=> BI = BC 

xét tam giác IOB và tam giác COB có : OB chung

góc IBO = góc CBO do BO là phân giác của góc IBC (gt)

=> tam giác IOB = tam giác COB (c-g-c)

=> góc IOB = góc COB (đn)

mà góc IOB + góc COB = 180 (kb)

=> góc IOB = 180 : 2 = 90 

=> BO _|_ CI (đn)

CA _|_ AB do góc BAC = 90 

xét tam giác IBC 

=> ID _|_ BC (tc)

mà ED _|_ BC (câu b)

=> I; E; D thẳng hàng