K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH và ΔKBH có

BA=BK

BH chung

HA=HK

Do đó: ΔBAH=ΔBKH

=>\(\widehat{BHA}=\widehat{BHK}\)

mà \(\widehat{BHA}+\widehat{BHK}=180^0\)(hai góc kề bù)

nên \(\widehat{BHA}=\widehat{BHK}=\dfrac{180^0}{2}=90^0\)

=>BH\(\perp\)AK tại H

=>AK\(\perp\)BI tại H

b: Sửa đề: KA là phân giác của góc IKD

Xét ΔIAK có

IH là đường trung tuyến

IH là đường cao

Do đó: ΔIAK cân tại I

Ta có: DK//AC

=>\(\widehat{DKA}=\widehat{KAI}\)

mà \(\widehat{KAI}=\widehat{IKA}\)(ΔIAK cân tại I)

nên \(\widehat{DKA}=\widehat{IKA}\)

=>KA là phân giác của góc DKI

11 tháng 4 2020

không biết

10 tháng 2 2022

cứt

 

30 tháng 12 2021

Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.

a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)

Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)

30 tháng 12 2021

b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K

Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:

\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung

\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)

Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)

\(\Rightarrow AK\perp BI\)tại H

a: Xét ΔABH và ΔKBH có 

BA=BK

\(\widehat{ABH}=\widehat{KBH}\)

BH chung

Do đó: ΔABH=ΔKBH

Xét ΔBAI và ΔBKI có 

BA=BK

\(\widehat{ABI}=\widehat{KBI}\)

BI chung

Do đó: ΔBAI=ΔBKI

Suy ra: IA=IK

mà BA=BK

nên BI là đường trung trực của AK

=>BI vuông góc với AK

b: Xét ΔNAK có

NH là đường cao

NH là đường trung tuyến

Do đó:ΔNAK cân tại N

mà NI là đường cao

nên NI là phân giác của góc ANK

Bài 1:

                                             Giải 

Gọi số hoa điểm tốt của 3 lớp 7A,7B,7C lần lượt là a,b,c(a,b,c >0 )

   Theo bài ta có: b + c - a =270

        Và a : b : c =15 : 17 :16 \(\Leftrightarrow\frac{a}{15}=\frac{b}{17}=\frac{c}{16}\)

              Áp dụng tính chất dãy tỉ số bằng nhau có:

    \(\frac{b}{17}=\frac{c}{16}=\frac{a}{15}\)\(=\frac{b+c-a}{16+17-15}\)\(=\frac{270}{18}=15\)

=>\(\hept{\begin{cases}a=225\\b=255\\c=240\end{cases}}\)

Vậy số hoa điểm tốt của lớp 7a là 225 bông

                                    lớp 7B là 255 bông

                                    lớp 7C là 240 bông

Xin lỗi bài 2 mình ko bt làm đâu