K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

M là trung điểm của BC

E là trung điểm của AC

Do đó: ME là đường trung bình của ΔABC

Suy ra: ME//AB

a: Xét ΔABC có 

M là trung điểm của BC

E là trung điểm của AC

Do đó: ME là đường trung bình của ΔABC

Suy ra: ME//AB

8 tháng 12 2021

cảm ơn bạn,giúp mình câu b đc ko bạn,mình cũng ko rõ lắm

a: Xét ΔABC có

M là trung điểm của BC

E là trung điểm của AC

Do đó: ME là đường trung bình

=>ME//AB

5 tháng 11 2017

Giúp với :<

9 tháng 1 2018

Chỗ mình kiểm tra học kì có câu này mà bây giờ bắt làm lại để nộp mà k biết làm

5 tháng 11 2017

Ta có IM Vuông góc với AB ( vì I đối xứn với M qua AB)

Mà D là giao điểm của AB và MI

=> MD vuông góc với AB hay góc ADM = 90°

Ta có AC vuông góc với MK( vìk đối xứng với M qua AC)

Mà E là giao điểm của AC và MK

=> Góc AEM =90°

Tứ giác ADMK có 

Góc A= Góc D =góc E = 90°

=> ADMK là hình chữ nhật

B) ta có D là trung điểm AB

M là trung điểm BC

=> DM là đường trung bình của ∆ ABC

=> DM = 1/2 AC

Ta có DM = AE ( ADMK là hình chữ nhật)

=> AE = 1/2 AC 

=> E là trung điểm AC 

Tứ giác AMCK có

EA= EC ( E là trung điểm AC)

EK= EM( k đối xứng với M qua AC , E là giao điểm(

=> AMCK là hình bình hành

Và có AC vuông góc với MK tại E 

=> AMCK là hình thoi

( Cũng có thể chứng minh như sau ta có ∆ ABC là ∆ vuông có AM là trung tuyến 

Nên AM = MC = 1/2 B C nên AMCK là hình thoi)

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đó: AMCK là hình chữ nhật

b: BM=CM=BC/2=3cm

\(AM=\sqrt{5^2-3^2}=4\left(cm\right)\)

S=1/2*AM*BC=1/2*6*4=3*4=12cm2

c: Để AMCK là hình vuông thì AM=CM=BC/2

=>ΔABC vuông tại A

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:
a. $M,E$ là trung điểm $BC, AC$

$\Rightarrow ME$ là đường trung bình của $ABC$ ứng với $AB$

$\Rightarrow ME\parallel AB$

Mà $AB\perp AC$ nên $ME\perp AC$

$\Rightarrow \widehat{E}=90^0$

Tứ giác $ADME$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên là hcn.

b.

Tứ giác $AMKC$ có 2 đường chéo $AC, MK$ cắt nhau tại trung điểm $E$ của mỗi đường nên là hình bình hành.

Mà $MK\perp AC$ (do $ME\perp AC$) 

$\Rightarrow AMKC$ là hình thoi.

c.

Gọi I là giao $DE, HM$

$DM\perp AB, AB\perp AC\Rightarrow DM\parallel AC$

$\Rightarrow \frac{DB}{AD}=\frac{BM}{MC}=1$ (định lý Talet)

$\Rightarrow DB=AD$ hay $D$ là trung điểm $AB$

$ME$ là đường trung bình ứng với cạnh AB

$\Rightarrow ME\parallel AB$ và $ME=\frac{1}{2}AB$

Mà $E$ là trung điểm của $MK$

$\Rightarrow EK\parallel AB$ và $EK=AB:2$

$\Rightarrow EK\parallel DA$ và $EK=DA$

$\Rightarrow DEKA$ là hbh

$\Rightarrow DE\parallel AK$

Mà $HM\perp AK$ nên $DE\perp HM(*)$

Lại có:

$DE\parallel AK \Rightarrow IE\parallel HK$

$\Rightarrow \frac{MI}{IH}=\frac{ME}{EK}=1$

$\Rightarrow MI=IH(**)$

Từ $(*); (**)$ suy ra $DE\perp HM$ tại trung điểm $I$ của $HM$

$\Rightarrow DE$ là đường trung trực của $HM$

$\Rightarrow DH=DM, EH=EM$

$\Rightarrow \triangle DHE=\triangle DME$ (c.c.c)

$\Rightarrow \widehat{DHE}=\widehat{DME}=90^0$

$\Rightarrow DH\perp HE$

AH
Akai Haruma
Giáo viên
20 tháng 12 2023