K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: Xét ΔMHA vuông tại H và ΔMKD vuông tại K có

MA=MD

\(\widehat{HMA}=\widehat{KMD}\)(hai góc đối đỉnh)

Do đó: ΔMHA=ΔMKD

=>MH=MK

=>M là trung điểm của HK

Xét tứ giác AHDK có

M là trung điểm chung của AD và HK

=>AHDK là hình bình hành

11 tháng 7 2023

a) Xét ∆CMA và ∆BMD:

Góc CMA= góc BMD (đối đỉnh)

MA=MD (gt)

MC=MB (M là trung điểm BC)

=> ∆CMA=∆BMD(c.g.c)

=> góc CAM = góc BDM và CA=DB

Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB

=> CABD là hình bình hành

Lại có góc CAB = 90 độ (gt)

=> ACDB là hình chữ nhật

b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA

Mà 2 góc này ở bị trí so le trong nên AE//DB

Lại có AE=BD(=CA)

=> AEBD là hình bình hành

20 tháng 11 2016

1, Xét tứ giác ABDC có :

M là trung điểm AD 

Vì : DM=MA

Và M là trung điểm BC

Vì : BM=MC

=> AD và BC cắt nhau tại trung điểm mỗi đường

Hay ABCD là HBH

Mà HBH có 1 góc vuông là hình chữ nhật

Vậy đpcm

2a, Xét tam giác BHA có  

BE=EH

Và AN=NH

=> EN là đtb của tam giác BHA 

=> EN=1/2BA

Và EN//AB

Mà : BA//DC (Vì ABCD là HCN)

Nên : EN//DF  (1)

Ta lại có : DF=1/2DC ( DF=FC)

Mà : AB=DC ( Vì ABCD là HCN)

Nên : DF=1/2AB

Mà : EN=1/2AB

=> DF=EN   (2)

Từ (1)(2) suy ra : EDNF là hình bình hành

2b, mình không biết làm

Nhớ k mình nha !

20 tháng 11 2016

1. Ta có: M là trung điểm của BC, M là trung điểm của AD => ABDC là hình bình hành

Xét tam giác ABC vuông tại A có AM là trung tuyến => AM=1/2 BC mà AM=MD => MD = 1/2 BC => tam giác BDC vuông tại D

Xét hình bình hành ABDC có góc D= 90* => ABDC là hình chữ nhật

12 tháng 12 2023

loading...  loading...  loading...  loading...  

12 tháng 12 2023

loading...  a) Tứ giác ABDC có:

M là trung điểm của BC (gt)

M là trung điểm của AD (gt)

⇒ ABDC là hình bình hành

Mà ∠BAC = 90⁰ (∆ABC vuông tại A)

⇒ ABDC là hình chữ nhật

b) Do ABDC là hình chữ nhật (cmt)

⇒ CD = AB (1)

Do B là trung điểm của AE (gt)

⇒ BE = AB = AE : 2 (2)

Từ (1) và (2) ⇒ CD = BE

Do ABDC là hình chữ nhật (cmt)

⇒ CD // AB

⇒ CD // BE

Tứ giác BEDC có:

CD // BE (cmt)

CD = BE (cmt)

⇒ BEDC là hình bình hành

c) Do ABDC là hình chữ nhật (cmt)

⇒ AC // BD

Do đó AC, BD, EK đồng quy là vô lý

Em xem lại đề nhé!