K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

27 tháng 12 2020

Xl bạn trình độ mik chỉ làm đc vậy thôi nha!

 

D N A C B F E

                                            Chứng minh

a,         Xét tứ giác ANEF có:

                   Góc NAF= 90( vì ΔABC vuông tại A)

                       Góc ANF= 900 (vì EN⊥ AC)

                    Góc AFE= 900 ( vì EF ⊥ AB)

    ⇒ Tứ giác ANEF là hình chữ nhật( đpcm)

 

                          

27 tháng 12 2020

b)Xét tam giác BAC vuông tại A có:

AE là đường trung tuyến(BE=EC)

\(\Rightarrow\)AE=BE=EC

Xét t/g AEBD có:

BF=FA(EF vuông góc BA)

DF=FE(D đx với E qua F)

\(\Rightarrow\)T/g AEBD là hbh

Mà AE=BE(cmt)

\(\Rightarrow\)T/g AEBD là hthoi

21 tháng 11 2019

Hình như đề sai rồi thì phải!?

4 tháng 1 2020

a) Ta có: NB = NC (gt); ND = NA (gt)

⇒ Tứ giác ABDC là hình bình hành

có ∠A = 90o (gt) ⇒ ABDC là hình chữ nhật.

b) Ta có: AI = IC (gt); NI = IE (gt)

⇒ AECN là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).

mặt khác ΔABC vuông có AN là trung tuyến nên AN = NC = BC/2.

Vậy tứ giác AECN là hình thoi.

c) BN và DM là 2 đường trung tuyến của tam giác ABD; BN và MD giao nhau tại G nên G là trọng tâm tam giác ABD.

Tương tự G’ là trọng tâm của hai tam giác ACD

⇒ BG = BN/3 và CG’ = CN/3 mà BN = CN (gt) ⇒ BG = CG’

d) Ta có: SABC = (1/2).AB.AC = (1/2).6.6 = 24 (cm2)

Lại có: BG = GG’ = CG’ (tính chất trọng tâm)

⇒ SDGB = SDGG' = SDG'C = 1/3 SBCD

(chung đường cao kẻ từ D và đáy bằng nhau)

Mà SBCD = SCBA (vì ΔBCD = ΔCBA (c.c.c))

⇒SDGG' = 24/3 = 8(cm2)

23 tháng 12 2022

SDGB là S tam giác DGB pk ạ ?

16 tháng 8 2018

Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp tran cong hoai giải bài toán này.

a: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: AC=8cm

\(S_{ABC}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: Đề sai rồi bạn

AM//NB mà

a: BC=10cm

AM=5cm

b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

c: Xét ΔCAB có

M là trung điểm của BC

MF//AB

Do đó F là trung điểm của AC

Xét tứ giác AMCD có

F là trung điểm chung của AC và MD

nên AMCD là hình bình hành

mà MA=MC

nên AMCD là hình thoi

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh