K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

b: ΔDEC vuông tại E 

=>DE<DC

c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

d: Xét ΔDBC có góc DBC=góc DCB

nên ΔDBC cân tại D

e: gọi giao của CF và AB là H

Xét ΔBHC có

BF,CA là đường cao

BF cắt CA tại D

=>D là trực tâm

=>HD vuông góc BC tại E

=>H,D,E thẳng hàng

=>BA,DE,CF là trực tâm

28 tháng 4 2024

Hình đâu 

5 tháng 8 2015

a) Hai tam giác = nhau theo trường hợp cạnh huyền góc nhọn (tự c/m)

b) Từ 2 tam giác = nhau ở phần a => AD= DE

Ta có tam giác ADF =  tam giác EDC theo trường hợp góc cạnh góc (tự c/m)

=> DF= DC ( 2 cạnh tg ứng)

c) Xét tam giác ADF, có : góc A= 90 độ

=> DF là cạnh lớn nhất (quan hệ giữa góc và cạnh đối diện)

=> AD  < DF 

Mà DF= DC (chứng minh b)

=> AD < DC (đpcm)

5 tháng 8 2015

b) Xét tam giác ADF và tam giác EDC, có: 

Góc A= góc E (=90 độ)

AD= AE (vừa mình đã ns rồi) 

Góc ADF= góc EDC (đối đỉnh)

Từ 3 điều trên => tam  giác ADF =  tam giác EDC (g-c-g)

=> DF= DC (2 cạnh tg ứng)

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

b: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: ta có: ΔABD=ΔEBD

nên BA=BE và DA=DE

=>BD là đường trung trực của AE

hay BD\(\perp\)AE

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E co

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA+AF=BF

BE+EC=BC

mà BA=BE; AF=EC

nên BF=BC

=>ΔBFC cân tại B

mà BD là phângíac

nên BD vuông góc CF

c: Xet ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc EDC+góc FDC=180 độ

=>E,D,F thẳng hàng