K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E

có: BD là cạnh chung

góc ABD = góc EBD (gt)

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AB = EB = 6 cm ( 2 cạnh tương ứng)

=> EB = 6 cm

Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\left(py-ta-go\right)\)

thay số: \(6^2+8^2=BC^2\)

          \(\Rightarrow BC^2=100\)

              \(\Rightarrow BC=10cm\)

mà \(E\in BC\)

=> EB + EC = BC

thay số: 6 + EC = 10

                  EC = 10 - 6

               => EC = 4 cm

c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD =  ED ( 2 cạnh tương ứng)

    AB = EB ( 2 cạnh tương ứng) (1)

Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E

có: AD = ED ( chứng minh trên)

góc ADI = góc EDC ( đối đỉnh)

\(\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)\)

=> AI = EC ( 2 cạnh tương ứng)(2)

Từ (1);(2) => AB + AI = EB + EC

               => BI = BC

              => tam giác BIC cân tại B ( định lí tam giác cân)

d) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD = ED ( 2 cạnh tương ứng) (1)

Xét tam giác EDC vuông tại E

có: ED < DC ( định lí cạnh góc vuông, cạnh huyền) (2)

Từ (1);(2) => AD <DC

mk ko bít kẻ hình trên này!

28 tháng 4 2018

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E

có: góc ABD = góc EBD (gt)

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

b) Xét tam giác ABC vuông tại A

có: \(AB^2+AC^2=BC^2\) ( py - ta - go)

thay số: \(6^2+8^2=BC^2\)

\(\Rightarrow BC^2=100\)

\(\Rightarrow BC=10cm\)

ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AB = EB = 6cm ( 2 cạnh tương ứng)

=> EB = 6cm

mà EB + EC = BC ( E thuộc BC )

thay sô: 6 cm + EC = 10 cm

                         EC = 10 cm - 6 cm

                        EC = 4 cm

c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD = ED ( 2 cạnh tương ứng)

Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E

có: góc ADI = góc EDC ( đối đỉnh)

  AD = ED ( cmt)

\(\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)\)

=> AI = EC ( 2 cạnh tương ứng)

Mà AB = BE ( tam giác ABD = tam giác EBD)

=> AI + AB = EC + BE

=> IB = CB

=> tam giác BIC cân tại B ( định lí tam giác cân)

d) ta có: AD = ED ( tam giác ABD = tam giác EBD) (1)

Xét tam giác EDC vuông tại E

có: ED < DC ( định lí cạnh huyền, góc nhọn) (2)

Từ (1); (2) => AD < DC

xin lỗi bn nha! mk ko bít kẻ hình trên này, nên mk ko kẻ cho bn đc đâu

20 tháng 2 2023

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E

có: góc ABD = góc EBD (gt)

BD là cạnh chung

⇒ΔABD=ΔEBD(ch−gn)⇒Δ���=Δ���(�ℎ−��)

b) Xét tam giác ABC vuông tại A

có: AB2+AC2=BC2��2+��2=��2 ( py - ta - go)

thay số: 62+82=BC262+82=��2

⇒BC2=100⇒��2=100

⇒BC=10cm⇒��=10��

ta có: ΔABD=ΔEBD(pa)Δ���=Δ���(��)

=> AB = EB = 6cm ( 2 cạnh tương ứng)

=> EB = 6cm

mà EB + EC = BC ( E thuộc BC )

thay sô: 6 cm + EC = 10 cm

                         EC = 10 cm - 6 cm

                        EC = 4 cm

c) ta có: ΔABD=ΔEBD(pa)Δ���=Δ���(��)

=> AD = ED ( 2 cạnh tương ứng)

Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E

có: góc ADI = góc EDC ( đối đỉnh)

  AD = ED ( cmt)

⇒ΔADI=ΔEDC(cgv−gn)⇒Δ���=Δ���(���−��)

=> AI = EC ( 2 cạnh tương ứng)

Mà AB = BE ( tam giác ABD = tam giác EBD)

=> AI + AB = EC + BE

=> IB = CB

=> tam giác BIC cân tại B ( định lí tam giác cân)

d) ta có: AD = ED ( tam giác ABD = tam giác EBD) (a)

Xét tam giác EDC vuông tại E

có: ED < DC ( định lí cạnh huyền, góc nhọn) (b)

Từ (a); (b) => AD < DC.

cre baji

ngaingung

1 tháng 5 2017

HINH VE DAU?

1 tháng 5 2017

a, xet tam giac ADB va tam giac EBD co:

goc ABD = goc EBD (vi BD la tia phan giac cua goc B)

BD chung

goc BAD = goc BED (=90 do)

suy ra tam giac ADB = tam giac EBD 

b,vi tam giac ABC la tam giac vuong nen theo dinh ly pi-ta-go ta co:

BC^2 = AB ^2 + AC^2

     =   6^2 + 8^2

     =  36+64

     =100 suy ra BC = 10

ta co tam giac ABC = tam giac EBD nen AB = BE = 6 

ta co EC = BC - BE

             = 10 - 6

             =4

c,d ban tu lm

      

6 tháng 8 2020

A B C D E F

A) XÉT \(\Delta ABC\)VUÔNG TẠI A

\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)

THAY \(10^2=6^2+AC^2\)

         \(100=36+AC^2\)

\(\Rightarrow AC^2=100-36\)

\(\Rightarrow AC^2=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

ta có \(AD+DC=AC\)

\(\Leftrightarrow3+DC=8\)

\(\Leftrightarrow DC=8-3=5\left(cm\right)\)

B) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)

\(\widehat{BAD}=\widehat{BED}=90^o\)

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

BD LÀ CẠNH CHUNG 

=>\(\Delta ABD\)=\(\Delta EBD\)( CH-GN)

\(\Rightarrow BA=BE\)(HAI CẠNH TƯƠNG ỨNG )

=> \(\Delta BAE\)LÀ TAM GIÁC CÂN TẠI B

c)  XÉT \(\Delta ADF\)VUÔNG TẠI A

\(\Rightarrow DF>AD\left(1\right)\)( CẠNH HUYỀN LỚN NHẤT )

VÌ \(\Delta ABD\)=\(\Delta EBD\)(CMT)

=> \(AD=ED\left(2\right)\)(HAI CẠNH TƯƠNG ỨNG )

TỪ (1) VÀ (2) 

\(\Rightarrow DF>ED\)

1 tháng 4 2022

Cứu mình với

 

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
30 tháng 4 2016

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
 

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

5

Bạn tự vẽ hình nha!!!

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

30 tháng 4 2016

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

28 tháng 4 2024

Hình đâu