K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2016

vẻ hình đi bạn

16 tháng 9 2016

ta có HC-HB=3.5 =>HC=3.5+HB (1)

dễ dàng chứng minh được AHB và CHA là hai tam giác đồng dạng

=>HB*HC=AH2=62=36 (2)

từ (1) và (2)

=>HB=4.5cm=>HC=8cm

theo hệ thức lượng trong tam giác vuông ta có

AB2=HB*BC=4.5*12.5=56.25=>AB=7.5cm

AC2=HC*BC=8*12.5=100=>AC=10cm

1 tháng 8 2016

Xét ΔABh vuông tại H(gt)

=> \(AB^2=HB^2+HA^2\) (theo định lý pytago)

=>\(HB^2=AB^2-AH^2=7,5^2-6^2=20,25\)

=>\(HB=4,5\) cm

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

       \(AB^2=BH\cdot BC\)

=> \(BC=\frac{AB^2}{HB}=\frac{7,5^2}{4,5}=12,5\) cm

Có: BC=HB+HC

=>HC=BC-HB=12,5-4,5=8 cm

Xét ΔABC vuông tại A(gt)

=>\(BC^2=AB^2+AC^2\) (theo định lý pytago)

=>\(AC^2=BC^2-AB^2=12,5^2-7,5^2=100\)

=>AC=10

1 tháng 8 2016

Hỏi đáp Toán

22 tháng 8 2023

a) \(AH^2=HB.HC=50.8=400\)

\(\Rightarrow AH=20\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)

mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AB.AC=20.58=1160\)

Theo Pitago cho tam giác vuông ABC :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)

\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)

\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)

Chu vi Δ ABC :

\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

Bài 5: 

a) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\cot\widehat{C}\)

\(=21\cdot\cot40^0\)

\(\simeq25,03\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)

hay \(BC\simeq32,67\left(cm\right)\)

25 tháng 9 2021

\(BC=BH+HC=8\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=2\cdot8=16\left(cm\right)\\AC^2=2\cdot6=12\left(cm\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=4\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

25 tháng 9 2021

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:

\(AH^2=BH.HC\Rightarrow AH=\sqrt{BH.HC}=\sqrt{2.6}=2\sqrt{3}\left(cm\right)\)

Áp dụng đ/lý Pytago trong tam giác vg ABH và AHC

\(\left\{{}\begin{matrix}AB^2=AH^2+HB^2=16\\AC^2=AH^2+HC^2=48\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}AB=4cm\\AC=4\sqrt{3}cm\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

a.

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) theo định lý Pitago

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6$ (cm) theo định lý Pitago

$CH=BC-BH=10-3,6=6,4$ (cm)

b.

Áp dụng HTL trong tam giác vuông:

$AH^2=BH.CH$

$\Rightarrow BH=\frac{AH^2}{CH}=\frac{AH^2}{CH}=\frac{9,6^2}{12,8}=7,2$ (cm)

$BC=BH+CH=7,2+12,8=20$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{9,6^2+7,2^2}=12$ (cm) theo Pitago

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16$ (cm) theo Pitago

 

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

c.

$AB.AC=AH.BC=12.25=300$

$AB^2+AC^2=BC^2=625$

$(AB+AC)^2-2AB.AC=625$

$AB+AC=\sqrt{625+2AB.AC}=\sqrt{625+2.300}=35$

Áp dụng Viet đảo thì $AB,AC$ là nghiệm của:

$X^2-35X+300=0$

$\Rightarrow (AB,AC)=(20,15)$ (giả sử $AB>AC$)

$BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)