Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý Py-ta-go , xét tam giác vuông BAC có :
AB2 + AC2 = BC2
=> 92 + 122 = BC2
=> 81 + 144= BC2
=> 225 = BC2
=> BC = căn 225
=> BC = 15 cm
b)Xét tam giác ABD và tam giác MBD có :
Góc BAD = góc BMD = 90 độ (1)
BD : cạnh chung (2)
Góc
b) Xét tam giác ABD và tam giác MBD có :
Góc BAD = góc BMD = 90 đô ( GT ) (1)
BD : cạnh chung (2)
Góc ABD = góc BMD ( vì tia BD là tia phân giác ) (3)
Từ (1) ; (2) và (3) => tam giác ABD = tam giác MBD ( cạnh huyền - góc nhọn )
a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)
hay 92 + 122 = BC2
=> BC2 = 81 + 144 = 225 => BC = \(\sqrt{225}=15cm\)
trong tam giác ABC có: AB < AC < BC
=> góc C < góc B < góc A (định lý)
b) xét tam giác ABD và tam giác MBD có:
góc A = góc M = 900 (gt)
BD chung
góc B1 = góc B2 (gt)
=> tam giác ABD = tam giác MBD (ch-gn)
c) xét tam giác ADE và tam giác MCD có:
góc A = góc M = 900 (gt)
AD = DM (tam giác ABD = tam giác MBD)
góc ADE = góc MDC (đối đỉnh)
=> tam giác ADE = tam giác MDC (g.c.g)
=> AE = MC (cạnh tương ứng)
ta có: BE = BA + AE
BC = BM + MC
mà BA = BM (tam giác ở câu a)
AE = MC (cmt)
=> BE = BC
=> tam giác BEC cân tại E
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)
hay 92 + 122 = BC2
=> BC2 = 81 + 144 = 225 => BC = √225=15cm225=15cm
trong tam giác ABC có: AB < AC < BC
=> góc C < góc B < góc A (định lý)
b) xét tam giác ABD và tam giác MBD có:
góc A = góc M = 900 (gt)
BD chung
góc B1 = góc B2 (gt)
=> tam giác ABD = tam giác MBD (ch-gn)
c) xét tam giác ADE và tam giác MCD có:
góc A = góc M = 900 (gt)
AD = DM (tam giác ABD = tam giác MBD)
góc ADE = góc MDC (đối đỉnh)
=> tam giác ADE = tam giác MDC (g.c.g)
=> AE = MC (cạnh tương ứng)
ta có: BE = BA + AE
BC = BM + MC
mà BA = BM (tam giác ở câu a)
AE = MC (cmt)
=> BE = BC
=> tam giác BEC cân tại E
hok tốt
â) Áp dụng định lý pytago thuận vào \(\Delta ABC\)vuông tại A ,co :
\(BC^2=AB^2+AC^2\)
\(BC^2=9^2+12^2\)
\(BC^2=81+144\)
\(BC^2=225\)
\(BC=\sqrt{25}\)
\(BC=15\left(cm\right)\)
b) Câu b này bạn viết sai đề nha ,( tia phân giác của gocB cắt AC tại D) mới đúng nha :)
Xét : \(\Delta ABDva\Delta MBD,co:\)
\(\widehat{A}=\widehat{M}=90^o\)
BD là cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( BM là tia phân giác (gt) )
Do do : \(\Delta ABD=\Delta MBD\) ( cạnh huyền - cạnh góc vuông )
c)
Xét : \(\Delta AEDva\Delta MCD,co:\)
\(\widehat{A}=\widehat{M}=90^o\)
\(\widehat{D_1}=\widehat{D_2}\) ( hai góc đối đỉnh )
AD = AM ( hai cạnh tương ứng của hai tam giác bằng nhau )
Do do : \(\Delta AED=\Delta MCD\) ( g - c -g )
=> AE = MC ( hai cạnh tương ứng ) ( 1 )
mà :
BA = BM ( hai cạnh tương ứng của hai tam giác bằng nhau ) ( 2 )
BE = BA + AE ( vì A nằm giữa B và E ) ( 3 )
BC = BM + MC ( vì M nằm giữa B và C ) ( 4 )
Từ ( 1 ) , ( 2 ) , ( 3 ) vả ( 4 ) suy ra BE = BC
=> \(\Delta BEC\) cân tại B ( hai cạnh bên bằng nhau )
HÌNH MÌNH VẼ HƠI XẤU NHA :)
CHÚC BẠN HỌC TỐT !!!
a)
áp dụng định lí pi-ta-go vào tam giác vuông ABC ta có :
BC2 = AB2 + AC2
=> BC2 = 92 + 122
=> BC2 = 81 + 144
=> BC2 = 225
=> BC2 = 152
=> BC = 15
b)
Xét tam giác ABD và tam giác MBD có :
cạnh BD chung ( đề bài đã cho )
góc BAD = góc BMD = 90o ( đề bài đã cho )
góc ABD = góc MBD ( đề bài đã cho )
=> tam giác ABD = tam giác MBD
( cạnh huyền - góc nhọn )
Vậy : a) BC = 15 cm
b) tam giác ABD = tam giác MBD
chúc cậu học tốt