K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm 

Hình như đề bài thiếu nha bạn

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

27 tháng 12 2021

a) Xét ∆AMC và ∆NMB có:

+ AM = NM (gt).

+ Góc AMC = Góc NMB (đối đỉnh).

+ CM = BM (M là trung điểm của BC).

=> ∆AMC = ∆NMB (c - g - c).

b) ∆AMC = ∆NMB (cmt).

=> Góc CAM = Góc BNM (cặp góc tương ứng). 

Mà 2 góc này ở vị trí so le trong.

=> AC // BN (dhnb).

c) ∆AMC = ∆NMB (cmt).

=> AC = NB (cặp cạnh tương ứng). 

Xét tứ giác ACNB có:

+ AC = BN (cmt).

+ AC // BN (cmt).

=> Tứ giác ACNB là hình bình hành (dhnb).

=> AB // NC (tính chất hình bình hành).