Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
=>ADHE là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AED}=\widehat{ABC}\)
ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC=MB
MA=MC
=>ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\)
\(\widehat{MAC}+\widehat{AED}=\widehat{ACB}+\widehat{ABC}=90^0\)
=>AM vuông góc DE
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
AM\(\perp\)DE
=>\(\widehat{AED}+\widehat{MAC}=90^0\)
mà \(\widehat{AED}=\widehat{AHD}\left(cmt\right)\)
và \(\widehat{AHD}=\widehat{ABH}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{ABH}+\widehat{MAC}=90^0\)
mà \(\widehat{ABH}+\widehat{MCA}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{MAC}=\widehat{MCA}\)
=>MA=MC
\(\widehat{MAC}+\widehat{MAB}=\widehat{BAC}=90^0\)
\(\widehat{MCA}+\widehat{MBA}=90^0\)(ΔABC vuông tại A)
mà \(\widehat{MAC}=\widehat{MCA}\)
nên \(\widehat{MAB}=\widehat{MBA}\)
=>MA=MB
mà MA=MC
nên MB=MC
=>M là trung điểm của BC
( Hình em tự vẽ nhé! )
Lấy O là giao điểm DE và HA
+ Xét tứ giác ADHE có:
\(\widehat{HDA}=\widehat{DAE}=\widehat{AEH}=90^o\)
=> ADHE là hình chữ nhật
=> O là trung điểm AH (t/c)
O là trung điểm DE (t/c)
=> OA = OH = OD = OE
=> ΔAOE cân tại O
=> \(\widehat{OAE}=\widehat{OEA}\left(tc\right)\)
+ Xét ΔABH vuông tại H
=> \(\widehat{BAH}+\widehat{ABH}=90^o\)
Mà \(\widehat{BAH}+\widehat{CAH}=90^o\)
=> \(\widehat{ABH}=\widehat{CAH}\)
Mà \(\widehat{CAH}=\widehat{OEH}\)
\(\widehat{ABH}=\widehat{AEO}\)
+ Xét ΔADE và ΔACB có:
\(\widehat{DAE}=\widehat{CAB}\left(=90^o\right)\)
\(\widehat{AED}=\widehat{ABC}\)
=> ΔADE \(\sim\) ΔACB (g.g)
=> \(\widehat{ADE}=\widehat{ACB}\left(2gtu\right)\)
Lấy I là giao điểm AM và DE
+ Xét ΔAIE vuông tại I
=> \(\widehat{IAE}+\widehat{IEA}=90^o\)
Mà \(\widehat{BAM}+\widehat{MAC}=90^o\)
=> \(\widehat{IEA}=\widehat{MAB}\)
Mà \(\widehat{IEA}=\widehat{ABC}\)
=> \(\widehat{ABC}=\widehat{BAM}\)
=> ΔABM cân tại M
=> MA = MB (t/c)
+ Xét ΔAID vuông tại I
=> \(\widehat{IDA}+\widehat{IAD}=90^o\)
Mà \(\widehat{IAD}+\widehat{MAC}=90^o\)
=> \(\widehat{IDA}=\widehat{MAC}\)
Mà \(\widehat{IDA}=\widehat{ACM}\)
=> \(\widehat{MAC}=\widehat{ACM}\)
=> ΔMAC cân tại M
=> MA = MC (t/c)
Mà MA = MB
=> MB = MC
=> M là trung điểm BC.
a: Xét tứ giác ADME có
\(\widehat{AEM}=\widehat{ADM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Suy ra: AM=DE
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>AH=DE và AH cắt DE tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và DE
b: ΔHDB vuông tại D có DI là trung tuyến
nên DI=HI=IB
Xét ΔIDO và ΔIHO có
ID=IH
DO=HO
IO chung
=>ΔIHO=ΔIDO
c: góc IDE=góc IDH+góc EDH
=góc IHD+góc EAH
=góc HAC+góc HCA=90 độ
=>ID vuông góc DE
góc KED=góc KEH+góc DEH
=góc KHE+góc DAH
=góc HAB+góc HBA=90 độ
=>KE vuông góc ED
=>ID//KE
=>DIKE là hình thang
cho tam giác ABC vuông tại A đường cao AH ( H thuộc cạnh BC) .gọi D, E theo thứ tự chân đường vuông góc kẻ từ H đến AB và AC .Gọi M, N theo thứ tự là trung điểm của BH và CH .Gọi I là giao điểm của AH và ED
1: cm tam giác DHE là tam giác vuông.Biết AB=3,AC=4, tính
a: bán kính của đường tròn ngoại tiếp tam giác DHE
b: cos ACH
2: cm ED là tiếp tuyến của đường tròn đg kính CH
3: cm I thuộc đg tròn đg kính Mn