Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé
a) ta có:
trong tam giác ABC:
 + góc B + góc C = 180
90 độ + góc B + 30 độ = 180 độ
=> góc B = 180 độ - 90 độ - 30 độ = 60 độ (1)
xét 2 tam giác vuông: ABH và ADH, có:
AH là cạnh chung
HD = HB (gt)
=> tam giác ABH = ADH (cạnh huyền - cạnh góc vuông)
=> AB = AD (2 cạnh tương ứng)
=>tam giác ABD cân tại A (2)
từ (1) , (2):
=> tam giác ABD đều (tam giác cân có 1 góc bằng 60 độ)
b)tam giac abd deu nên dab =60 dộ
cad+dab=90 suy ra cad+60=90 suy ra cad=90-60=30
tam giác cda có dca=dac=30 do suy ra tm giác cda cân tại d suy ra cd=da
cmd tam giác cah=ace((ch.gn)
bạn tự vẽ hình nhé
a) ta có:
trong tam giác ABC:
 + góc B + góc C = 180
90 độ + góc B + 30 độ = 180 độ
=> góc B = 180 độ - 90 độ - 30 độ = 60 độ (1)
xét 2 tam giác vuông: ABH và ADH, có:
AH là cạnh chung
HD = HB (gt)
=> tam giác ABH = ADH (cạnh huyền - cạnh góc vuông)
=> AB = AD (2 cạnh tương ứng)
=>tam giác ABD cân tại A (2)
từ (1) , (2):
=> tam giác ABD đều (tam giác cân có 1 góc bằng 60 độ)
:B
a) trong tam giác ABC có: Â + B + C = 1800 (đ/lý)
=> 900 + B + 300 = 1800
=> B = 1800 - (900 + 300)
B = 600 (1)
xét 2 tam giác vuông ABH và ADH có:
AH chung
HD = HB (gt)
=> tam giác ABH = tam giác ADH (ch-cgv)
=> AB = AD (cạnh tương ứng)
=> tam giác ABD cân tại A (2)
từ (1) và (2) => tam giác ABD là tam giác đều
a) xét tam giác ABD có AH là đường cao( AH vuông góc với BC)
đồng thời AH là đường trung tuyến( HD=HB)
=> tam giác ABD cân tại A(1)
lại có tam gisc ABC vuông tại A, gocs C=30 độ
=> góc B=90 độ = 90-30 =60 độ(2)
từ(1) (2)=> tam giác ABD đều
b) tam giác ABD đều => góc BAD=60 độ
vậy ta có góc BAD+góc DAC=90
hay 60+góc DAC=90
góc DAC=30 độ
Xét tam giác ADC có góc DAC=góc DCA=30
Vậy tam giác ADC cân tại D=> AD=DC
Xét tam giác ADH và tam giác CDE có
góc DEC=góc DHA=90
AD=CD(cmt)
góc CDE=góc ADH(đối đỉnh)
=> tam giác ADH=tam giác CDE(ch-gc)
=> AH= CE(2 cạnh tương ứng)
a, xét tam giác ABD có AH là đường cao( AH vuông góc với BC)
đồng thời AH là đường trung tuyến( HD=HB)
=> tam giác ABD cân tại A(1)
lại có tam gisc ABC vuông tại A, godc C=30 độ
=> góc B=90 độ-gócc
=90-30 =60 độ(2)
từ(1) (2)=> tam giác ABD đều
a) Áp dụng tính chất tổng ba góc ta có :
A + B + C = 180 độ
90 độ + B + 30 độ = 180 độ
B = 60 độ
Xét tam giác AHB và tam giác ADH, có:
AH là góc chung
=> AHB = AHD = 90 độ
=> HB = HD (gt)
Vậy ADH = ABH (c.g.c)
=> AB = AD (có 2 cạnh tương ứng)
=> Tam giác ABD là tam giác đèu
b) ABD đều => BAD = 60 độ
Vậy BAD + DAC = 90 độ
=> 60 độ + DAC = 90 độ
=> DAC = 30 độ
Xét từng tam giác ta có :
Tam giác DAC có góc DAC = 30 độ
Vậy tam giác DAC cận tại D
=> AD = CD
Xét 2 tam giác ADH và CDE có DEC = DEH = 90 độ
=> AD = CD
=> CED = AHD
=> EHD = CED (ch - gc)
=> AH = CE
c) DE = DH (cạnh tương ứng)
Vậy DHE cân tại E.
=> DHE = (180 - EHD) : 2 => cân tại D
=> DAC = (180 - ADC) : 2 => ADC = EDH (đối đỉnh)
=> DEH = DAC
Mà DEH = DAC so le trong.
Vậy EH//AC