Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có ai on ko nó chuyện vs mih chứ ai đng xem bóng đá thì cứ xem
A B C D M E K
a ) Ta có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^o\left(gt\right)\)
\(\Rightarrow ADME\) là hình chữ nhật ( tứ giác có ba góc vuông )
b ) Ta có : ME là đường trung bình của tam giác ABC
\(\Rightarrow ME//AB\) và \(ME=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)
\(\Rightarrow AD=ME=3\left(cm\right)\)( cạnh đối hình chữ nhật )
Lại có : \(\hept{\begin{cases}ME//AB\left(cmt\right)\\MB=MC\left(gt\right)\end{cases}}\)
\(\Rightarrow AE=CE=\frac{AC}{2}=\frac{8}{2}=4\left(cm\right)\)
ADME : hình chữ nhật
\(\Rightarrow A_{ADME}=AD.AE=3.4=12\left(cm^2\right)\)
c ) Dễ thấy AC là đường trung trực của MK
\(\Rightarrow AM=AK\)và \(CM=CK\)
Mà AM = CM \(\left(=\frac{1}{2}BC\right)\) ( \(\Delta ABC\) vuông tại A )
\(\Rightarrow AM=AK=CM=CK\)
\(\Rightarrow AMCK\)là hình thoi ( tứ giác có 4 cạnh bằng nhau )
d ) Ta có : \(ME=\frac{1}{2}AB\)
\(\Rightarrow AB=2ME=MK\)
Hình thoi AMCK là hình vuông \(\Leftrightarrow AC=MK\)
\(\Leftrightarrow AC=AB\) ( vì AB = MK )
\(\Leftrightarrow\Delta ABC\)cân tại A
Mà \(\Delta ABC\) vuông tại A (gt)
Vậy \(\Delta ABC\)vuông cân tại A thì hình thoi AMCK là hình vuông
Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
TH1: nếu tam giác ABC vuông tại A . bạn tự vẽ hình nhé
dễ thấy tứ giác ADME là hình chữ nhật .=> diện tích ADME=EM.MD
diện tích tam giác ABC=S=(AC.AB)/2
mặt khác ta có AC=AE+EC\(\ge\sqrt{AE\cdot EC}\)
\(AB=AD+DB\ge2\sqrt{AD\cdot DB}\)
==>\(AC\cdot AB\ge4\sqrt{AE\cdot EC\cdot AD\cdot DB}\)
ta có tam giác CEM đồng dạng tam giác MDB(g.g)=>\(\frac{CE}{MD}=\frac{EM}{DB}\)
=> CE.DB=EM.MD mà AE=MD ;AD=EM
do đó AE.EC.AD.DB=\(\left(EM\cdot MD\right)^2\)
=>2.diện tích ABC\(\ge\) diện tích tứ giác ADME==>diện tích ADME\(\le\frac{S}{2}\)
do đó MAX diện tích ADME=S/2 hay MAX diện tích MDE=S/4
dấu'=' xảy ra khi AE=EC và DA=DB hay M là trung điểm của BC