Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Xét tam giác ABC có:
\(\widehat{BAE}+\widehat{EAC}=90^0\)( Hai góc phụ nhau )
Xét tam giác AKC có:
\(\widehat{EAC}+\widehat{KCA}=90^0\)
=> \(\widehat{BAE}=\widehat{EAC}\)
Xét tam giác BHA và tam giác AKC có:
\(\widehat{BHA}=\widehat{AKC}=90^0\)
Cạnh huyền AB = AC ( Do tam giác ABC vuông cân ở A )
Góc nhọn: \(\widehat{BAE}=\widehat{EAC}\)( cmt )
=> Tam giác BHA = Tam giác AKC ( Cạnh huyền - góc nhọn )
=> BH = AK ( hai cạnh tương ứng )
b) Vì tam giác ABC vuông cân ở A
Mà AM là trung tuyến ( Do M là trung điểm BC )
=> AM cũng là đường cao của BC
=> AM vuông góc với BC
Xét tam giác AME vuông ở H có:
\(\widehat{MEA}+\widehat{MAE}=90^0\)
Xét tam giác KEC vuông ở K có:
\(\widehat{KEC}+\widehat{KCE}=90^0\)
Mà \(\widehat{MEA}=\widehat{KEC}\)( hai góc đối đỉnh )
=> \(\widehat{MAE}=\widehat{KCE}\) (1)
Ta có: CK vuông góc với AK
BH vuông góc với AK
=> CK // BH
=> \(\widehat{KCE}=\widehat{EBH}\) (2)
Từ (1) và (2) => \(\widehat{EBH}=\widehat{MAE}\)
Xét tam giác MAC vuông ở M có:
\(\widehat{MCA}+\widehat{MAC}=90^0\)
Xét tam giác ABC vuông ở A có:
\(\widehat{ABC}+\widehat{MCA}=90^0\)
=> \(\widehat{MAC}=\widehat{ABC}\)
Mà \(\widehat{ABC}=\widehat{MCA}\)( Do tam giác ABC vuông cân ở A )
=> \(\widehat{MAC}=\widehat{MCA}\)
=> Tam giác MAC vuông cân ở M
=> MA = MC
Mà BM = MC ( Do M trung điểm BC )
=> MA = MC = BM
Xét tam giác MBH và tam giác MAK có:
AM = BM ( cmt )
\(\widehat{EBH}=\widehat{MAE}\)( cmt )
AK = BH ( cmt )
=> Tam giác MBH = tam giác MAK ( c.g.c )
c) Vì tam giác MBH = tam giác MAK ( cmt )
=> \(\widehat{MKH}=\widehat{BHM}\) (3)
=> MK = MH
=> Tam giác MHK cân ở M (4)
Xét tam giác BHE vuông ở H có:
\(\widehat{BHM}+\widehat{MHK}=90^0\)( Hai góc phụ nhau ) (5)
Thay (3) vào (5) ta được: \(\widehat{MKH}+\widehat{MHK}=90^0\)
=> Tam giác MHK vuông ở M (6)
Từ (4) và (6) => Tam giác MHK vuông cân ở M
# Mik thấy nhiều bạn khó câu này nên mik lm #
a. Xét tam giác BAH và tam giác CAK
BHA= CKA=90*
BA=AC (gt)
BAH=CAK ( cùng phụ với HAC)
=> tam giác BAH=tam giác CAK( ch-gn)
=> BH=AK (2 cạnh tương ứng)
b. Gọi I là giao điểm của AM và KC
Vì BH vg AH; Ck vg AH => BH// CK
=> HBM=KCM (so le trong )
Do tam giác IMC vuông tại M => MIC+MCI= 90*
Lại có tam giác AKI vuông tại K nên KAI+KIA=90*
Mà KIA= MIC( đối đỉnh)=> MIC= AKI hay MCK= KAM => AKM = MBH
Xét tam giác BHM và tam giác AKM
BH= AK ( theo câu a)
HBM= AKM( c/m trên)
BM = AM ( AM là trung tuyến tam giác vuông)
=> tam giác BHM= tam giác AKM(cgc)
c. Theo câu b,
tam giác BHM= tam giác AKM(cgc)
=> HM= KM(2 cạnh tương ứng)
Ta có BMK+KMA=BMA=90*
Mà HMB= KMA=> BMK+HMB=90*=HMK
Xét tam giác KMH có: HMK=90*; HM=KM => tam giác KMH vuông cân tại M
Bạn vẽ hình ra đã rồi nhìn lời giải nhá
a) TG' ABC vuông cân tại A -> g' ABC = g' ACB = 45 và AB = AC
TG' ABH vuông tại H -> g' ABH = 90 - BAH (1)
Có g' CAH = 90 - BAH ( TG' ABC vuông tại A ) (2)
Từ (1) và (2) -> g' ABH = g' CAH
Xét TG' AHB và TG' AKC có
g' AHB = g' AKC ( = 90 )
AB = AC ( gt )
g' HAB = g' KAC ( cmt )
-> TG' AHB = TG' AKC ( ch - gn )
-> BH = Ak
câu a/
xét tam giác ABH và CAK có:
góc AHB=góc AEC=90;AB=AC;góc ABH=góc CAE(cùng phụ với góc BAE)
=> tam giác ABH=CAK(cạnh huyền- góc nhọn)=>BH=AK
câu b/
tam giác ABC vuông cân; M là trung điểm của BC=>AM=BM=CM
xét tam giác BMH và AMK có
góc MBH=MAK(cùng phụ với góc BEH); BH=AK(cmt); BM=AM(cmt)
=>tam giác bằng nhau
Câu c/
theo câu b/ => MH=MK(2 cạnh tương ứng)(1)
Xét tam giác AHM và CEM có
AH=CE(tam giác ABH=CEK); MH=MK(cmt); AM=MC(cmt)
=> tam giác bằng nhau=>góc AMH= góc CMK
mà góc AMH+góc EMH=90
=>góc HME+gócCMK=90
=>góc HMK=90(2)
từ (1)(2)=> tam giác MHK vuông cân
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: \(\widehat{D}=\widehat{E}\)
Xét ΔHDB vuông tại H và ΔKEC vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHDB=ΔKEC
Suy ra: BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
Do đó: ΔAHB=ΔAKC