K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) Xét tam giác ABC có: 

\(\widehat{BAE}+\widehat{EAC}=90^0\)( Hai góc phụ nhau )

Xét tam giác AKC có:

\(\widehat{EAC}+\widehat{KCA}=90^0\)

=> \(\widehat{BAE}=\widehat{EAC}\)

Xét tam giác BHA và tam giác AKC có:

\(\widehat{BHA}=\widehat{AKC}=90^0\)

Cạnh huyền AB = AC ( Do tam giác ABC vuông cân ở A )

Góc nhọn: \(\widehat{BAE}=\widehat{EAC}\)( cmt )

=> Tam giác BHA = Tam giác AKC ( Cạnh huyền - góc nhọn )

=> BH = AK ( hai cạnh tương ứng )

b) Vì tam giác ABC vuông cân ở A

Mà AM là trung tuyến ( Do M là trung điểm BC )

=> AM cũng là đường cao của BC

=> AM vuông góc với BC

Xét tam giác AME vuông ở H có:

\(\widehat{MEA}+\widehat{MAE}=90^0\)

Xét tam giác KEC vuông ở K có:

\(\widehat{KEC}+\widehat{KCE}=90^0\)

Mà \(\widehat{MEA}=\widehat{KEC}\)( hai góc đối đỉnh )

=> \(\widehat{MAE}=\widehat{KCE}\)                         (1) 

Ta có: CK vuông góc với AK

BH vuông góc với AK

=> CK // BH 

=> \(\widehat{KCE}=\widehat{EBH}\)                                 (2)

Từ (1) và (2) => \(\widehat{EBH}=\widehat{MAE}\)

Xét tam giác MAC vuông ở M có:

\(\widehat{MCA}+\widehat{MAC}=90^0\)

Xét tam giác ABC vuông ở A có:

\(\widehat{ABC}+\widehat{MCA}=90^0\)

=> \(\widehat{MAC}=\widehat{ABC}\)

Mà \(\widehat{ABC}=\widehat{MCA}\)( Do tam giác ABC vuông cân ở A )

=> \(\widehat{MAC}=\widehat{MCA}\)

=> Tam giác MAC vuông cân ở M

=> MA = MC

Mà BM = MC ( Do M trung điểm BC )

=> MA = MC = BM

Xét tam giác MBH và tam giác MAK có:

AM = BM ( cmt )

\(\widehat{EBH}=\widehat{MAE}\)( cmt )

AK = BH ( cmt )

=> Tam giác MBH = tam giác MAK ( c.g.c )

c) Vì tam giác MBH = tam giác MAK ( cmt )

=> \(\widehat{MKH}=\widehat{BHM}\)                                (3)

=> MK = MH

=> Tam giác MHK cân ở M                   (4)

Xét tam giác BHE vuông ở H có:

\(\widehat{BHM}+\widehat{MHK}=90^0\)( Hai góc phụ nhau )                   (5)

Thay (3) vào (5) ta được: \(\widehat{MKH}+\widehat{MHK}=90^0\)                           

=> Tam giác MHK vuông ở M                     (6) 

Từ (4) và (6) => Tam giác MHK vuông cân ở M

# Mik thấy nhiều bạn khó câu này nên mik lm #

8 tháng 2 2020

Chịu !!

4 tháng 1 2022

a. Xét tam giác BAH và tam giác CAK

BHA= CKA=90*

BA=AC (gt)

BAH=CAK ( cùng phụ với HAC)

=> tam giác BAH=tam giác CAK( ch-gn)

=> BH=AK (2 cạnh tương ứng)

b. Gọi I là giao điểm của AM và KC

Vì BH vg AH; Ck vg AH => BH// CK

=> HBM=KCM (so le trong )

Do tam giác IMC vuông tại M => MIC+MCI= 90*

Lại có tam giác AKI vuông tại K nên KAI+KIA=90*

Mà KIA= MIC( đối đỉnh)=> MIC= AKI hay MCK= KAM => AKM = MBH

Xét tam giác BHM và tam giác AKM

BH= AK ( theo câu a)

HBM= AKM( c/m trên)

BM = AM ( AM là trung tuyến tam giác vuông)

=> tam giác BHM= tam giác AKM(cgc)

c. Theo câu b, 

tam giác BHM= tam giác AKM(cgc)

=> HM= KM(2 cạnh tương ứng)

Ta có BMK+KMA=BMA=90*

Mà HMB= KMA=> BMK+HMB=90*=HMK

Xét tam giác KMH có: HMK=90*; HM=KM => tam giác KMH vuông cân tại M

4 tháng 1 2022

hình như bạn có 1 sự nhầm lẫn :))

 

13 tháng 3 2016

Bạn vẽ hình ra đã rồi nhìn lời giải nhá

a) TG' ABC vuông cân tại A -> g' ABC = g' ACB = 45 và AB = AC

    TG' ABH vuông tại H -> g' ABH = 90 - BAH (1)

    Có g' CAH = 90 - BAH ( TG' ABC vuông tại A ) (2) 

 Từ (1) và (2) -> g' ABH = g' CAH 

Xét TG' AHB và TG' AKC có

      g' AHB = g' AKC ( = 90 )  

         AB = AC  ( gt )

       g' HAB = g' KAC ( cmt )

 -> TG' AHB = TG' AKC ( ch - gn )

-> BH = Ak

      

    

13 tháng 2 2016

câu a/ 

xét tam giác ABH và CAK có:

góc AHB=góc AEC=90;AB=AC;góc ABH=góc CAE(cùng phụ với góc  BAE)

=> tam giác ABH=CAK(cạnh huyền- góc nhọn)=>BH=AK

câu b/

tam giác ABC vuông cân; M là trung điểm của BC=>AM=BM=CM

xét tam giác BMH và AMK có

góc MBH=MAK(cùng phụ với góc BEH); BH=AK(cmt); BM=AM(cmt)

=>tam giác bằng nhau

Câu c/

theo câu b/ => MH=MK(2 cạnh tương ứng)(1)

Xét tam giác AHM và CEM có

AH=CE(tam giác ABH=CEK); MH=MK(cmt); AM=MC(cmt)

=> tam giác bằng nhau=>góc AMH= góc CMK

mà góc AMH+góc EMH=90

=>góc HME+gócCMK=90

=>góc HMK=90(2)

từ (1)(2)=> tam giác MHK vuông cân

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: \(\widehat{D}=\widehat{E}\)

Xét ΔHDB vuông tại H và ΔKEC vuông tại K có 

BD=CE

\(\widehat{D}=\widehat{E}\)

Do đó: ΔHDB=ΔKEC

Suy ra: BH=CK

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

BH=CK

Do đó: ΔAHB=ΔAKC

11 tháng 2 2017

tgttgtg

11 tháng 2 2017

bài này sai đề rồi