Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D A E B C
Ta có : \(\widehat{DAB}=\widehat{CAE}=90^0\Rightarrow\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}\)
hay \(\widehat{DAC}=\widehat{EAB}\)
Xét \(\Delta ADC\)và \(\Delta ABE\)có :
AD = AB
\(\widehat{DAC}=\widehat{EAB}\)
AC = AE
\(\Rightarrow\Delta ADC=\Delta ABE\left(c.g.c\right)\Rightarrow DC=BE\)
Vì tam giác ADC = tam giác ABE nên \(\widehat{AEB}=\widehat{ACD}\)
mà \(\widehat{AKE}=\widehat{BKC}\left(doi-dinh\right),\widehat{AKE}+\widehat{AEB}=90^0\)
\(\Rightarrow\widehat{BKC}+\widehat{AEB}=90^0\) hay góc \(\widehat{BKC}+\widehat{ACD}=90^0\)
\(\Rightarrow DC\perp BE\)
∠DAC = ∠DAB + ∠BAC = 90o + ∠BAC
∠BAE = ∠BAC + ∠CAE = ∠BAC + 90o
⇒ ∠DAC = ∠BAE
Xét ΔABE và ΔADC, ta có:
Gọi giao điểm DC và AB là H, giao điểm của CD và BE là K
Ta có: ΔABE = ΔADC (cmt)
⇒ ∠ABE = ∠ADC (hai góc t.ư)
hay ∠HBK = ∠ADH
+ ΔADH và ΔBKH đều có tổng ba góc trong mỗi tam giác bằng 180o nên có:
∠ADH + ∠DAH + ∠AHD = ∠BKH + ∠KHB + ∠HBK
Mà ∠AHD = ∠BHK (hai góc đối đỉnh)
∠ADH = ∠HBK (chứng minh trên)
Suy ra ∠DAH = ∠HKB
Mà ∠DAH = 90o nên ∠HKB = 90o
⇒ DC ⊥ BE (điều phải chứng minh)
a)
Ta có: \(\hept{\begin{cases}\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=60^o+\widehat{BAC}\\\widehat{BAE}=\widehat{CAE}+\widehat{BAC}=60^o+\widehat{BAC}\end{cases}\Rightarrow\widehat{DAC}=\widehat{BAE}}\)
b) Xét \(\Delta\)DAC và \(\Delta\)BAE có:
\(\hept{\begin{cases}AD=AB\\\widehat{DAC}=\widehat{BAE}\\AC=AE\end{cases}\Rightarrow\Delta DAC=\Delta BAE\left(cgc\right)}\)
=> DC=BE (2 cạnh tương ứng)
c) Theo câu (b) ta có: \(\Delta DAC=\Delta BAE\)
\(\Rightarrow\widehat{ADC}=\widehat{ABE}\)hay \(\widehat{IDA}=\widehat{IBK}\left(1\right)\)
Gọi I là giao của DC và AB
Xét \(\Delta IBK:\widehat{IBK}+\widehat{IKB}+\widehat{BIK}=180^o\left(2\right)\)
Xét \(\Delta AID:\widehat{AID}+\widehat{DAI}+\widehat{ADI}=180^o\left(3\right)\)
Mà \(\widehat{BIK}=\widehat{AID}\)(2 góc đối đỉnh)(4)
Từ (1)(2)(3)(4) => \(\widehat{IKB}=\widehat{IAD}=60^o\)hay \(\widehat{DKB}=60^o\)
Ta có: \(\widehat{EKC}=\widehat{DKB}=60^o;\widehat{DKE}=\widehat{BKC}\)(2 góc đối đỉnh)
\(\Rightarrow\widehat{DKB}+\widehat{DKE}+\widehat{EKC}+\widehat{BKC}=360^o\)
\(\Rightarrow2\widehat{DKB}+2\widehat{BKC}=360^o\)
\(\Rightarrow2\cdot60^o+2\cdot\widehat{BKC}=360^o\)
\(\Rightarrow\widehat{BKC}=120^o\)