Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp
Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng
\(a, \frac {AB+AC}{2}\)
\(b,BE+CF < \frac{3}{2}BC\)
\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)
Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN
Bài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB
Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .
Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB
Vẽ trung tuyến CF của tam giác ABC, trên tia đối của FC lấy điểm N sao cho FN = FC.
C/m được: \(\Delta ANF=\Delta BCF\left(c-g-c\right)\Rightarrow AN=BC\)
Xét \(\Delta CAN\)có AN + AC > NC ( bất đẳng thức tam giác )
\(\Rightarrow AC+BC>NC\)
Vì G là trọng tâm của tam giác ABC nên CF = 3GF \(\Rightarrow NC=6GF\left(1\right)\)
Ta sẽ chứng minh: nếu \(\widehat{AGB}\le90^0\)thì \(GF\ge\frac{AB}{2}\)
Giả sử \(GF< \frac{AB}{2}\)hay \(GF< AF=BF\)thì \(\widehat{FAG}< \widehat{AGF};\widehat{FBG}< \widehat{BGF}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)
\(\Rightarrow\widehat{ABG}+\widehat{BAG}< \widehat{FGB}+\widehat{FGA}=\widehat{AGB}\le90^0\)
Xét tam giác AGB có \(\widehat{AGB}+\widehat{BAG}+\widehat{AGB}< 90^0+90^0=180^0\)(vô lí)
Vậy nếu \(\widehat{AGB}\le90^0\)thì \(GF\ge\frac{AB}{2}\)(2)
Từ (1) và (2) suy ra \(NC\ge3AB\Rightarrow AC+BC>3AB\left(đpcm\right)\)
Trl
-Bạn kiệt làm đúng r nhé !~
Học tốt
nhé bạn ~