\(\le\)90
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Vẽ trung tuyến CF của tam giác ABC, trên tia đối của FC lấy điểm N sao cho FN = FC.

C/m được: \(\Delta ANF=\Delta BCF\left(c-g-c\right)\Rightarrow AN=BC\)

Xét \(\Delta CAN\)có AN + AC > NC ( bất đẳng thức tam giác )

\(\Rightarrow AC+BC>NC\)

Vì G là trọng tâm của tam giác ABC nên CF = 3GF \(\Rightarrow NC=6GF\left(1\right)\)

Ta sẽ chứng minh: nếu \(\widehat{AGB}\le90^0\)thì \(GF\ge\frac{AB}{2}\)

Giả sử \(GF< \frac{AB}{2}\)hay \(GF< AF=BF\)thì \(\widehat{FAG}< \widehat{AGF};\widehat{FBG}< \widehat{BGF}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)

\(\Rightarrow\widehat{ABG}+\widehat{BAG}< \widehat{FGB}+\widehat{FGA}=\widehat{AGB}\le90^0\)

Xét tam giác AGB có \(\widehat{AGB}+\widehat{BAG}+\widehat{AGB}< 90^0+90^0=180^0\)(vô lí)

Vậy nếu \(\widehat{AGB}\le90^0\)thì \(GF\ge\frac{AB}{2}\)(2)

Từ (1) và (2) suy ra \(NC\ge3AB\Rightarrow AC+BC>3AB\left(đpcm\right)\)

14 tháng 2 2020

Trl

-Bạn kiệt làm đúng r nhé !~

Học tốt 

nhé bạn ~

14 tháng 2 2020

Bạn tham khảo

17 tháng 1 2020

Mik hok sai bạn

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0
16 tháng 3 2022

ko btttttttttttttttttttttttttttttt