Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D A B C l M K
Từ M kẻ MK // BD (K thuộc DC)
a, Xét t/g DBC có: MK // BD, MB = MC (gt)
=> MK là đường trung bình của t/g DBC
=> CK = DK (1)
Xét t/g AMK có: MK // ID, IA = IM (gt)
=> ID là đường trung bình của t/g AMK
=> DA = DK (2)
Từ (1) và (2) => CK = DA
Mà CK = \(\frac{DC}{2}\)
=>\(DA=\frac{DC}{2}\left(đpcm\right)\)
b, Vì MK là đường trung bình của t/g DBC
=> \(MK=\frac{BD}{2}\left(3\right)\)
Vì ID là đường trung bình của t/g AMK
=>\(ID=\frac{MK}{2}\left(4\right)\)
Từ (3) và (4) => BD > ID
a) Ta có: \(AD=\dfrac{1}{2}DC\)(gt)
mà \(EC=ED=\dfrac{DC}{2}\)(E là trung điểm của DC)
nên AD=EC=ED
b) Xét ΔCDB có
M là trung điểm của BC(gt)
E là trung điểm của CD(gt)
Do đó: ME là đường trung bình của ΔCDB(Định nghĩa đường trung bình của tam giác)
Suy ra: ME//BD và \(ME=\dfrac{1}{2}BD\)(Định lí 2 về đường trung bình của tam giác)
hay ME//ID
Xét tứ giác MEDB có ME//BD(cmt)
nên MEDB là hình thang có hai đáy là ME và BD(Định nghĩa hình thang)
c) Xét ΔAME có
D là trung điểm của AE(AD=DE, D nằm giữa A và E)
DI//ME(cmt)
Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)
hay IA=IM(Đpcm)
Từ M kẻ MK//DE ,MKcắt AC tại K
Xét tg AMK có:
DE//MK
D là tr.điểm AM
=>E là tr.điểm AK
=>AE=EK=1/2AK
Xét tg BEC có:
BE//MK (do DE//MK)
M là tr.điểm BC (AM là tr.tuyến của tg ABC)
=>K là tr.điểm EC
=>KE=1/2EC
Mà AE=EK (cmt)
=>AE=1/2EC (đpcm)
Bạn có cần mình vẽ hình không, thôi mình cứ vẽ cho rõ ràng nhé, mà hình không chắc đúng đâu nha :33
A B C M K D E
a) Xét tam giác \(ACM\), KM là tia phân giác của \(\widehat{AMC}\)
\(\Rightarrow\frac{AM}{MC}=\frac{AD}{DC}\) ( tính chất đường phân giác trong tam giác )
Mà : \(MC=MB\) ( Do M là trung điểm của BC )
\(\Rightarrow\frac{AM}{MB}=\frac{AD}{DC}\) ( đpcm )
b) Chứng minh tương tự phần a) với tam giác \(AMB\) ta có : \(\frac{AM}{MB}=\frac{AK}{BK}\) ( tính chất đường phân giác trong tam giác )
Khi đó : \(\frac{AK}{BK}=\frac{AD}{DC}\left(=\frac{AM}{MB}\right)\)
\(\Rightarrow\frac{AK}{AB}=\frac{AD}{AC}\)
Xét \(\Delta ABC,K\in AB,D\in AC\) và \(\frac{AK}{AB}=\frac{AD}{AC}\left(cmt\right)\)
\(\Rightarrow KD//BC\) ( định lý Talet đảo ) (đpcm)
c) Áp dụng định lý Talet cho các tam giác ABM , ACM ta có :
+) \(EK//BM\Rightarrow\frac{KE}{BM}=\frac{AE}{AM}\)
+) \(ED//MC\Rightarrow\frac{ED}{MC}=\frac{AE}{AM}\)
\(\Rightarrow\frac{KE}{BM}=\frac{ED}{MC}\Rightarrow EK=ED\) ( do \(BM=CM\) )
Nên : E là trung điểm của KD ( đpcm )
d) Ta có : \(KD=10\Rightarrow KE=5\)
Theo câu c) ta có : \(\frac{KA}{AB}=\frac{AE}{AM}=\frac{KE}{BM}\Rightarrow\frac{5}{8}=\frac{KE}{BM}=\frac{5}{BM}\)
\(\Rightarrow BM=8\Rightarrow BC=16\left(cm\right)\)
Vậy : \(BC=16cm\)